UDC 636.5:636.082.2:591.3

doi: 10.15389/agrobiology.2014.4.16eng

REPRODUCTIVE FUNCTION IN HYBRID POULTRY. I. AN IMPACT OF BREEDING FOR PRODUCTIVITY TRAITS (review)

Yu.I. Zabudskii

Russian State Agrarian Correspondence University,
1, ul. Yu. Fuchika, Balashikha, Moscow Province, 143900 Russia,
e-mail zabudsky@hotmail.com

Received November 29, 2012


In the lines and crosses of modern hybrid poultry bred for high yielding the metabolic disorders are indicated resulting in a number of syndromes, particularly ascites, heart pathology, sudden death, laying termination, disturbances of locomotory functions, declined stress tolerance, more aggressive behavior and cannibalism, etc. The adaptation mechanisms and resistance to external factors are depressed, and as a result, a reduced survivability occurs. The reproduction and the parameters of egg or meat yield are misbalanced. Changes are observed in egg mass, in the rate and composition of egg components and eggshell permeability, and also in the vitelline membrane. Selection for the same type of productivity leads to a significantly heterogenic embryogenesis. Starting from the second or third selected generation, a thermotolerance of embryos differs between the crosses. At that, different thermo tolerance of embryos is characteristic for both the genetic lines selected for definite productive traits and the individuals from free coupling population. In turkeys, the breeding for increased egg production leads to longer egg incubation, whereas the meat production as a selection criterion has no pronounced effect on incubation period. The main peculiarities of embryogenesis in high-yield hybrids when compared to the initial population are as fellows: time to complete embriogenesis differs, the eggshell permeability changes, the metabolic heat production differs, the allometric growth of heart, liver and kidneys occurs, the cordial rhythm and energy exchange in the myocardium are disordered, the neurohumoral functions are modified. It is shown the influence of sex-linked genes and a specific parental effect on reproductive function in the crosses bred for yielding parameters. As a possible ways to correct these negative effects, i) the combination of traits used for breeding should be revised, ii) the rations of parental poultry should be optimized and iii) the technological parameters of egg incubation should be adjusted for different genotypes with respect to their ontogenetic specificity.

Keywords: poultry, genotype, breeding, productivity, egg incubation, embryo metabolism, technological parameters of egg incubation.

 

Full article (Rus)

 

REFERENCES

1. Cheng H.W., Muir W.M.  Mechanisms of aggression and production in chickens: genetic variations in the functions of serotonin, catecholamine, and corticosterone. World's Poultry Science Journal, 2007, 63(2): 233-254. CrossRef
2. Fisinin V.I.,Tuchemskii L.I.,Salamatin A.V.,Zhuravlev I.V.,Dolgorukova A.M. Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2008, 6: 33-39.
3. Surai P., Fisinin V.I. The modern anti-stress technologies in poultry: from antioxidants to vitagenes (review). Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2012, 4: 3-12 (http://www.agrobiology.ru/4-2012surai-eng.html).
4. Hoffman J.B., Benson A.P, Christensen V.L, Fairchild B.D, Davis A.J. Follicular development and expression of the messenger ribonucleic acid for the inhibin/activin subunits in two genetic lines of turkey hens that differ in total egg production. Poult. Sci., 2007, 86(5): 944-952. CrossRef
5. Zhuravlev I.V., Dolgorukova A.M., Salamatin A.V. Doklady RASKHN, 2005, 5: 33-36.
6. Zabudskii Yu.I. Ptitsevodstvo, 2004, 2: 13.
7. Stanishevskaya O.I. Povyshenie geneticheskogo potentsiala kur po produktivnym i adaptivnym priznakam na osnove otbora po kachestvennym kharakteristikam yaits i pri optimizatsii uslovii rannego ontogeneza. Avtoreferat doktorskoi dissertatsii [Selection for egg quality and optimization of early ontogenesis conditions to increase genetic potential of productivity and adaptability in hens. DSc Thesis, 2010]. St. Petersburg, 2010.
8. Dyadichkina L., Tsilinskaya T., Pozdnyakova N., Melekhina T. Ptitsevodstvo, 2011, 1: 25-27.
9. ParonyanI., ShabanovaS., PopovI.,Vasil'evaL.,MakarovaA. Ptitsevodstvo, 2012, 5: 2-4.
10. Lilburn M.S., Antonelli A. The effects of genotype on embryonic development in eggs from divergent turkey genotypes. Poult. Sci., 2012, 91(4): 823-828. CrossRef
11. Lourens A., van Middelkoop J. Embryo temperature affects hatchability and grow-out performance of broilers. Avian Poultry Biological Review, 2000, 11: 299-301.
12. Zabudskii Yu.I., Kiselev L.Yu., Delyan A.S., Kamalov R.A., Goliko-
va A.P., Fedoseeva N.A., Myshkina M.S. Problemy biologii produktivnykh zhivotnykh, 2012, 1: 5-16.
13. Zabudskii Yu.I., Golikova A.P., Fedoseeva N.A. Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2012, 4: 14-21 (http://www.agrobiology.ru/4-2012zabudskyi.html).
14. Deeb N., Cahaner A. Genotype-by-environment interaction with broiler genotypes differing in growth rate. 3. Growth rate and water consumption of broiler progeny from weight-selected versus non selected parents under normal and high ambient temperatures. Poult. Sci., 2002, 81(3): 293-301.
15. Shawer M.F., Moreng R.E. Hypothermal stress resistance in the domestic fowl: 1. Evidence of genetic variability. Poult. Sci., 1971, 50(3): 890-894.
16. Pereira D., Vitorasso G., Oliveira S., Kakimoto S., Togashi C., Soares N. Correlations between thermal environment and egg quality of two layer commercial strains. Brazil. J. Poult. Sci., 2008, 10(2): 81-88. CrossRef
17. Scheideler S.E, Jaroni D., Froning G. Strain and age effects on egg composition from hens fed diets rich in n-3 fatty acids. Poult. Sci., 1998, 77(2): 192-196. CrossRef
18. Lindgren I., Altimiras J. Sensitivity of organ growth to chronically low oxygen levels during incubation in red jungle fowl and domesticated chicken breeds. Poult. Sci., 2011, 90(1): 126-135.
19. Christensen V.L., Havenstein G.B., Davis G.S. Egg characteristics, carbohydrate metabolism, and thyroid hormones in late chick embryos from different genetic lines. Poult. Sci., 1995, 74(3): 551-562. CrossRef
20. Christensen V.L., Noble D.O., Nestor K.E. Influence of selection for increased body weight, egg production, and shank width on the length of the incubation period of turkeys. Poult. Sci., 2000, 79(5): 613-618. CrossRef
21. Korshunova L.G. Transgenez i ekspressiya genov u sel'skokhozyaistvennoi ptitsy. Avtoreferat doktorskoi dissertatsii [Transgenesis and gene expression in poultry. DSc Thesis]. Moscow, 2012.
22. McNabb A.F.M., Dunnington E.A., Siegel P.B., Suvarna S. Perinatal thyroid hormones and hepatic 5´-deiodinase in relation to hatching time in weight-selected chickens. Poult. Sci., 1993, 72(9): 1764-1771.
23. Liu Z., McBride B.W., Lirette A., Chambers J.R. Characterization of embryonic oxygen consumption of two broiler chicken lines differing in body fat content. Can. J. Animal Sci., 1995, 75(1): 115-119. CrossRef
24. Hyankova L., Starosta F. Divergent selection for shape of growth curve in Japanese quail. 6. Hatching time, hatchability and embryo mortality. Br. Poult. Sci., 2012, 53(5): 592-598.
25. Hamidu J.A., Fasenko G.M., Feddes J.J.R., O’Dea E.E., Ouellette C.A., Wi-
neland M.J., Christensen V.L. The effect of broiler breeder genetic strain and parent flock age on eggshell conductance and embryonic metabolism. Poult. Sci., 2007, 86(11): 2420-2432. CrossRef
26. Meijerhof R. Different breeds demand different incubation measures. World Poultry, 2011, 27(5) (http://www.aviculture-europe.nl/nummers/11E06A06.pdf).
27. Tona K., Onagbesan O.M., Kamers B., Everaert N., Bruggeman V., De-cuypere E. Comparison of Cobb and Ross strains in embryo physiology and chick juvenile growth. Poult. Sci., 2010, 89(8): 1677-1683. CrossRef
28. Kemps B.J., De Ketelaere B., Bamelis F.R., Decuypere E.M.,  De Baerdemaeker J.G. Vibration analysis on incubating eggs and its relation to embryonic development. Biotechnology Progress, 2003, 19(3): 1022-1025. CrossRef
29. Fasenko G., Robinson F. An examination of the incubation profiles and hatched chick weights of three broiler breeder genetic pure lines. Poult. Sci., 2000, 79 (Suppl. 1): S182.
30. Druyan S. The effects of genetic line (broilers vs layers) on embryo development. Poult. Sci., 2010, 89(7): 1457-1467. CrossRef
31. Janke O., Tzschentke B., Boerjan M. Heat production and body temperature in embryos of modern chicken breeds. Book of Abstracts of XXII World’s Poultry Congress. Istanbul, 2004: 233.
32. Noble D. The effects of selection and genotype by environment interactions on performance, behavior, and well-being of turkeys. Ph.D. Dissertation. The Ohio State University, Columbus, OH, 1996 (tsit. po ssylke (20).
33. Christensen V.L., Davis G., Nestor K.E. Environmental incubation factors influence embryonic thyroid hormones. Poult. Sci., 2002, 81(4): 442-450. CrossRef
34. Christensen V.L., Ort D.T., Nestor K.E., Havenstein G.B., Velleman S.G. Genetic control of embryonic cardiac growth and functional maturation in turkeys. Poult. Sci., 2008, 87(5): 858-877. CrossRef
35. Christensen V.L., Fairchild B.D., Ort D.T., Nestor K.E. Dam and sire effects on sperm penetration of the perivitelline layer and resulting fecundity of different lines of turkeys. The Journal of Applied Poultry Research, 2005, 14(3): 483-491.
36. Crossley D.A., Altimiras J. Effect of selection for commercially productive traits on the plasticity of cardiovascular regulation in chicken breeds during embryonic development. Poult. Sci., 2012, 91(10): 2628-2636. CrossRef
37. Mirsalimi S.M., Qureshi F.S., Julian R.J., O’Brien P.J. Myocardial biochemical changes in furzaolidone induced cardiomyopathy in turkeys. Journal of Comparative Pathology, 1990, 102(2): 139-147. CrossRef
38. Hulet R., Meijerhof R. Multi- or single-stage incubation for high-meat yielding broiler strains. Proc. Southern Poultry Science and Southern Conference of Avian Diseases. Atlanta, 2001: 35.
39. EFSA panel on animal health and welfare: scientific opinion on the influence of genetic parameters on the welfare and the resistance to stress of commercial broilers. EFSA Journal, 2010, 8(7): 1666.
40. Li D., Liu W., Liu J., Yi G., Lian L., Qu L., Li J., Xu G., Yang N. Whole-genome scan for signatures of recent selection reveals loci associated with important traits in White Leghorn chickens. Poult. Sci., 2012, 91(8): 1804-1812. CrossRef
41. Silversides F.G., Scott T.A. Effect of storage and layer age on quality of eggs from two lines of hens. Poult. Sci., 2001, 80(8): 1240-1245. CrossRef
42. Lotfi E., Zerehdaran S., Raoufi Z. Genetic properties of egg quality traits and their correlations with performance traits in Japanese quail. Br. Poult. Sci., 2012, 53(5): 585-591. CrossRef
43. Nirasawa K., Takahashi H., Takeda H., Furukawa T., Takeda T., Nagamine Y. Restricted maximum likelihood estimates of genetic parameters and genetic trends of chickens divergently selected for eggshell strength. J. Anim. Breed. Genet., 1998, 115(1-6): 375-381. CrossRef
44. Nestor K.E., Bacon W.L., Lambio A.L. Divergent selection for egg production in Coturnix coturnix Japonica. Poult. Sci., 1983, 62(8): 1548-1552. CrossRef
45. Minvielle F., Oguz Y. Effects of genetics and breeding on egg quality of Japanese quail. World’s Poultry Science Journal, 2002, 58(3): 291-295. CrossRef
46. Saatci M., Omed H., Dewi I.A. Genetic parameters from univariate and bivariate analyses of egg and weight traits in Japanese quail. Poult. Sci., 2006, 85(2): 185-190. CrossRef
47. Sezer M. Heritability of exterior egg quality traits in Japanese quail. Journal of Applied Biological Sciences, 2007, 2(1): 37-40.
48. Hidalgo A., Martins E., Santos A., Quadros T., Ton A., Teixeira R. Genetic characterization of egg weight, egg production and age at first egg in quails. Revista Brasileira de Zootecnia, 2011, 40(1): 95-99. CrossRef
49. Wolc A., Arango J., Settar P., O’Sullivan N.P., Olori V.E., White M.S., Hill W.G., Dekkers J.C.M. Genetic parameters of egg defects and egg quality in layer chickens. Poult. Sci., 2012,  91(6): 1292-1298. CrossRef
50. Begli H.E., Zerehdaran S., Hassani S., Abbasi M.A., Ahmadi A.R. Heritability, genetic and phenotypic correlations of egg quality traits in Iranian native fowl. Br. Poult. Sci., 2010, 51(6): 740-744. CrossRef
51. Shi S.R., Wang K.H., Dou T.C., Yang H.M. Egg weight affects some quality traits of chicken eggs. Journal of Food Agriculture and Environment, 2009, 7: 432-434.
52. Hocking P., Bain M., Channing C., Fleming R., Wilson S. Genetic variation for egg production, egg quality and bone strength in selected and traditional breeds of laying fowl. Br. Poult. Sci., 2003; 44(3): 365-373. CrossRef
53. Kavtarashvili A.Sh., Imangulov Sh.A., Okolelova T.M. Ptitsa i ptitseprodukty. 2003, 4: 22.
54. Zabudskii Yu.I., Grikhina N.V. Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2002, 6: 80-84.
55. Zabudskii Yu.I. Ptitsevodstvo, 2004, 2: 13.
56. Bur'yan M. Ptitsevodstvo, 2005, 4: 46-47.
57. Zabudskii Yu.I., Shuvalova M.V. Materialy XVII Mezhdunarodnoi konferentsiiVsemirnoi nauchnoi assotsiatsii po ptitsevodstvu (15-17 maya 2012 goda) [Proc. XVII Int. Conf. of World’s Poultry Association (May 15-17, 2012)]. Sergiev Posad, 2012: 240-242.
58. Van der Wiebe S.L. We have the future of hatchery technology at our fingertips. World Poultry, 2004, 10: 24-26.
59. Tona K., Agbo K., Kamers B., Everaert N., Willemsen H., Decuypere E., Gbeassor M. Comparison of Loghmann White and Loghmann Brown strains in embryo physiology. Int. J. Poult. Sci., 2010, 9(9): 907-910.
60. Cheng H., Muir W.M. The effects of genetic selection for survivability and productivity on chicken physiological homeostasis. World's Poultry Science Journal, 2005, 61(3): 383-397. CrossRef
61. Schmidt J., Andree R., Davis K., Treese S., Satterlee D. Influence of maternal corticosterone treatment on incubation length of eggs laid by Japanese quail hens selected for divergent adrenocortical stress responsiveness. Br. Poult. Sci., 2009, 50(6): 739-747. CrossRef
62. Jones D., Anderson K. Housing system and laying hen strain impacts on egg microbiology. Poult. Sci., 2013, 92(8): 2221-2225. CrossRef
63. European Commission. Council Directive 1999/74/EC of 19 July 1999: Minimum standards for the protection of laying hens. Off. J. Eur. Communities, 1999, L203: 53-57.

back