doi: 10.15389/agrobiology.2013.4.3eng

UDC 636.5:591.1:577.27


V.I. Fisinin1, P. Surai2, 3

1All-Russian Research and Development Institute of Poultry, Russian Academy of Agricultural Sciences,
10, ul. Ptitsegradskaya, Sergiev Posad, Moscow Province, 141311, Russia
2Feed-Food. Ltd,
53 Dongola Road, Ayr, KA7 3BN, UK, Scotland,
3Scottish Agricultural College,
King's Buildings, West Mains Road, Edinburgh, EH9 3JG, UK, Scotland

Received March 12, 2013

Gut immunity plays a crucial role in maintenance of the whole body immunity being the first and most important line of defence from various pathogenic organisms and substances consumed with feed and able to colonize host cells and tissues. The role of protective mechanisms in the gut is difficult to overestimate. For example, the process of learning distinguishing between «self and non-self» taking place in the gut are fundamental for the immunity development as well as for the development of nutrient tolerance. It is necessary to underline that structural changes in the gut, in particular at the mucosa level are responsible for decreasing efficacy of nutrient assimilation from the feed. Therefore, gut status determines the chicken health, utilization of nutrients and biologically active substances (FCR) and other important commercially relevant parameters of the poultry production. This review summarises recent knowledge about the development and functioning of protective immunological mechanisms in the gut. A particular attention is paid to the possibilities on the modulation of gut immunity by a mixture of biological active substances.

Keywords: сhicken, stress, immunity, gut, vita-genes.


Full article (Rus)

Full text (Eng)



1. Klasing K.C. Nutrition and the immune system. Br. Poult. Sci., 2007, 48: 525-537. CrossRef
2. Hampson D.J. Alterations in piglet small intestinal structure at weaning. Res. Vet. Scie., 1986, 40: 313-317.
3. Nabuurs M.J., Hoogendoorn A., Van der Molen E.J., Van Osta A.L. Villus height and crypt depth in weaned and unweaned pigs, reared under various circumstances in the Netherlands. Res. Vet. Scie., 1993, 55: 78-84. CrossRef
4. Friedman A., Al-Sabbagh A., Santos L.M., Fishman-Lobell J., Polanski M., Das M.P., Khoury S.J., Weiner H.L. Oral tolerance: a biologically relevant pathway to generate peripheral tolerance against external and self antigens. Chem. Immunol., 1994, 58: 259-290.
5. Klipper E., Sklan D., Friedman A. Response, tolerance and ignorance following oral exposure to a single protein antigen in gallus domesticus. Vaccine, 2001, 19: 2890-2897.
6. Brandtzaeg P. The mucosal immune system and its integration with the mammary glands. J. Pediatr., 2010, 156: S8-15.
7. Deplancke B., Gaskins H.R. Microbial modulation of innate defense: goblet cells and the intestinal mucus layer. Am. J. Clin. Nutr., 2001, 73: 1131S-1141S.
8. Specian R.D., Oliver M.G. Functional biology of intestinal goblet cells. Am. J. Physiol., 1991, 260: C183-193.
9. Chadee K., Petri W.A. Jr., Innes D.J., Ravdin J.I. Rat and human colonic mucins bind to and inhibit adherence lectin of Entamoeba histolytica. J. Clin. Invest., 1987, 80: 1245-1254.
10. Kim Y.S., Ho S.B. Intestinal goblet cells and mucins in health and disease: recent insights and progress. Curr. Gastroenterol. Rep., 2010, 12: 319-330.
11. Forder R.E., Howarth G.S., Tivey D.R., Hughes R.J. Bacterial modulation of small intestinal goblet cells and mucin composition during early posthatch development of poultry. Poult. Sci., 2007, 86: 2396-2403.
12. Smirnov A., Sklan D., Uni Z. Mucin dynamics in the chick small intestine are altered by starvation. J. Nutr., 2004, 134: 736-742.
13. Horn N.L., Donkin S.S., Applegate T.J., Adeola O. Intestinal mucin dynamics: response of broiler chicks and White Pekin ducklings to dietary threonine. Poult. Sci., 2009, 88: 1906-1914.
14. Harmon B.G. Avian heterophils in inflammation and disease resistance. Poult. Sci., 1998, 77: 972-977.
15. Lillehoj H.S., Min W., Dalloul R.A. Recent progress on the cytokine regulation of intestinal immune responses to Eimeria. Poult. Sci., 2004, 83: 611-623.
16. Satchell D.P., Sheynis T., Shirafuji Y., Kolusheva S., Ouellette A.J., Jelinek R. Interactions of mouse Paneth cell α-defensins and α-defensin precursors with membranes. Prosegment inhibition of peptide association with biomimetic membranes. J. Biol. Chem., 2003, 278: 13838-13846.
17. Liu L., Zhao C., Heng H.H., Ganz T. The human β-defensin-1 and α-defensins are encoded by adjacent genes: two peptide families with differing disulfide topology share a common ancestry. Genomics, 1997, 43: 316-320.
18. Evans E.W., Beach G.G., Wunderlich J., Harmon B.G. Isolation of antimicrobial peptides from avian heterophils. J. Leukoc. Biol., 1994, 56: 661-665.
19. Harwig S.S., Swiderek K.M., Kokryakov V.N., Tan L., Lee T.D., Panyu-
tich E.A., Aleshina G.M., Shamova O.V., Lehrer R.I. Gallinacins: cysteine-rich antimicrobial peptides of chicken leukocytes. FEBS Lett., 1994, 342: 281-285.
20. Zhao C., Nguyen T., Liu L., Sacco R.E., Brogden K.A., Lehrer R.I. Gallinacin-3, an inducible epithelial β-defensin in the chicken. Infect. Immun., 2001, 69: 2684-2691.
21. Evans E.W., Harmon B.G. A review of antimicrobial peptides: defensins and related cationic peptides. Vet. Clin. Pathol., 1995, 24: 109-116.
22. Evans E.W., Beach F.G., Moore K.M., Jackwood M.W., Glisson J.R., Harmon B.G. Antimicrobial activity of chicken and turkey heterophil peptides CHP1, CHP2, THP1, and THP3. Vet. Microbiol., 1995, 47: 295-303.
23. Sugiarto H., Yu P.-L. Avian antimicrobial peptides: the defence role of beta defensins. Biochem. Biophys. Res. Commun., 2004,323: 721-727.
24. Lynn D.J., Higgs R., Gaines S., Tierney J., James T., Lloyd A.T., Far-
es M.A., Mulcahy G., O’Farrelly C. Bioinformatic discovery and initial characterisation of nine novel antimicrobial peptide genes in the chicken. Immunogenetics, 2004, 56: 170-177.
25. Van Dijk A., Veldhuizen E.J., Kalkhove S.I., Tjeerdsma-van Bok-
hoven J.L., Romijn R.A., Haagsman H.P. The beta-defensin gallinacin-6 is expressed in the chicken digestive tract and has antimicrobial activity against food-borne pathogens. Antimicrob Agents Chemother., 2007, 51: 912-922.
26. Milona P., Townes C.L., Bevan R.M., Hall J. The chicken host peptides,  allinacins  4, 7, and 9 have antimicrobial activity against Salmonella serovars. Biochem. Biophys. Res. Commun., 2007, 356: 169-174.
27. Higgs R., Lynn D.J., Gaines S., McMahon J., Tierney J.T., James T., Lloyd A.T., Mulcahy G., O’Farrelly C. The synthetic form of a novel chicken beta-defensin identified in silico is predominantly active against intestinal pathogens. Immunogenetics, 2005, 57: 90-98.
28. Xiao Y., Hughes A.L., Ando J., Matsuda Y., Cheng J.-F., Skinner-Nob-
le D., Zhang G. A genome-wide screen identifies a single β-defensin gene cluster in the chicken: implications for the origin and evolution of mammalian defensins. BMC Genomics, 2004, 5: 56.
29. Hong Y.H., Song W., Lee S.H., Lillehoj H.S. Differential gene expression profiles of β-defensins in the crop, intestine, and spleen using a necrotic enteritis model in 2 commercial broiler chicken lines. Poult. Sci., 2012, 91: 1081-1088.
30. Ramanathan B., Davis E.G., Ross C.R., Blecha F. Cathelicidins: microbicidal activity, mechanisms of action, and roles in innate immunity. Microbes Infect., 2002, 4: 361-372.
31. Zaiou M., Gallo R.L. Cathelicidins, essential gene-encoded mammalian antibiotics. J. Mol. Med., 2002, 80: 549-561.
32. Giacometti A., Cirioni O., Ghiselli R., Mocchegiani F., D’Amato G., Circo R., Orlando F., Skerlavaj B., Silvestri C., Saba V., Zanetti M., Scalise G. Cathelicidin peptide sheep myeloid antimicrobial peptide 29 prevents endotoxin-indu-
ced mortality in rat models of septic shock. Am. J. Respir. Crit. Care Med., 2004, 169: 187-194.
33. Yang D., Chen Q., Schmidt A.P., Anderson G.M., Wang J.M., Wooters J., Oppenheim J.J., Chertov O. LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J. Exp. Med., 2000, 192: 1069-1074.
34. Skerlavaj B., Scocchi M., Gennaro R., Risso A., Zanetti M. Structural and functional analysis of horse cathelicidin peptides. Antimicrob. Agents Chemother., 2001, 45: 715-722.
35. Van Dijk A., Veldhuizen E.J., Van Asten A.J., Haagsman H.P. CMAP27, a novel chicken cathelicidin-like antimicrobial protein. Vet. Immunol. Immunopathol., 2005, 106: 321-327.
36. Van Dijk A., Tersteeg-Zijderveld M.H., Tjeerdsma-van Bokhoven J.L., Jansman A.J., Veldhuizen E.J., Haagsman H.P. Chicken heterophils are recruited to the site of Salmonella infection and release antibacterial mature Cathelicidin-2 upon stimulation with LPS. Mol. Immunol., 2009, 46: 1517-1526.
37. Van Dijk A., Molhoek E.M., Bikker F.J., Yu P.L., Veldhuizen E.J., Ha-
agsman H.P. Avian cathelicidins: paradigms for the development of anti-infectives. Vet. Microbiol., 2011, 153: 27-36.
38. Sahoo N.R., Kumar P., Bhusan B., Bhattacharya T.K., Dayal S., Sa-
hoo M. Lysozyme in livestock: a guide to selection for disease resistance: a review. J. Anim. Sci. Adv., 2012, 2: 347-360.
39. Myers F.A., Lefevre P., Mantouvalou E., Bruce K., Lacroix C. Developmental activation of the lysozyme gene in chicken macrophage cells is linked to core histone acetylation at its enhancer elements. Nucleic Acids Res., 2006, 34: 4025-4035.
40. Callewaert L., Michiels C.W. Lysozymes in the animal kingdom. J. Biosci., 2010, 35: 127-160.
41. Lesnierowski G., Cegielska-Radziejewska R. Potential possibilities of production, modifi cation and practical application of lysozyme. Acta Sci. Pol., Technol. Aliment., 2012, 11: 223-230.
42. Sanderson I.R., Walker W.A. Mucosal barrier: an overview. London, 1999: 5-18.
43. Mestecky J., Moro I., Underdown B.J. Mucosal immunoglobulins. In: Mucosal Immunology /P.L. Ogra, J. Mestecky, M.E. Lamm, W. Strober, J. Bienenstock, J.R. McGhee (eds.). London, Academic Press, 1999: 133-152.
44. Klipper E., Sklan D., Friedman A. Immune response of chickens to dietary protein antigens. Vet. Immunol. Immunopathol., 2000, 74: 209-223.
45. Fagerland J.A., Arp L.H. Distribution and quantitation of plasma cells, T lymphocyte subsets, and B lymphocytes in bronchus-associated lymphoid tissue of chickens: age-related differences. Reg. Immunoly, 1993, 5: 28-36.
46. Sharma J.M. Overview of the avian immune system. Vet. Immunol. Immunopathol., 1991, 30: 13-17.
47. Muir W.I., Bryden W.L., Husband A.J. Investigation of the site of precursors for IgA-producing cells in the chicken intestine. Immunol. Cell Biol., 2000, 78: 294-296.
48. McGhee J.R., Mestecky J., Dertzbaugh M.T., Eldridge J.H., Hirasa-
wa M., Kiyono H. The mucosal immune system: from fundamental concepts to vaccine development. Vaccine, 1992, 10: 75-88.
49. Lillehoj H.S., Chung K.S. Postnatal development of T-lymphocyte subpopulations in the intestinal intraepithelium and lamina propria in chickens. Vet. Immunol. Immunopathol., 1992, 31: 347-360.
50. Vervelde L., Jeurissen S.H. Postnatal development of intra-epithelial leukocytes in the chicken digestive tract: phenotypical characterization in situ. Cell Tiss. Res., 1993, 274: 295-301.
51. Olah I., Nagy N., Magyar A., Palya V. Esophageal tonsil: a novel gut-associated lymphoid organ. Poult. Sci., 2003, 82: 767-770.
52. Matsumoto R., Hashimoto Y. Distribution and developmental change of lymphoid tissues in the chicken proventriculus. J. Vet. Med. Sci., 2000, 62: 161-167.
53. Kajiwara E., Shigeta A., Horiuchi H., Matsuda H., Furusawa S. Development of Peyer's patch and cecal tonsil in gut-associated lymphoid tissues in the chicken embryo. J. Vet. Med. Sci., 2003, 65: 607-614.
54. Befus A.D., Johnston N., Leslie G.A., Bienenstock J. Gut associated lymphoid tissue in the chicken. I. Morphology, ontogeny, and some functional characteristics of Peyer's patches. J. Immunol., 1980, 125: 2626-2632.
55. Olah I., Glick B., Taylor R.L. Jr. Meckel's diverticulum. II. A novel lymphoepithelial organ in the chicken. Anat. Rec., 1984, 208: 253-263.
56. Nagy N., Olah I. Pyloric tonsil as a novel gut-associated lymphoepithelial organ of the chicken. J. Anat., 2007,211: 407-411.
57. Fisinin V.I., Surai P.F. Zhivotnovodstvo segodnya, 2011, 9: 40-47.
58. Lillehoj H.S., Trout J.M. Avian gut-associated lymphoid tissues and intestinal immune responses to Eimeria parasites. Clinic. Microbiol. Rev., 1996, 9: 349-360.
59. Yasuda M., Tanaka S., Arakawa H., Taura Y., Yokomizo Y., Ekino S. A comparative study of gut-associated lymphoid tissue in calf and chicken. Anatom. Rec., 2002, 266: 207-217.
60. Liebler-Tenorio E.M., Pabst R. MALT structure and function in farm animals. Vet. Res., 2006, 37: 257-280.
6. Garboczi D.N., Ghosh P., Utz U., Fan Q.R., Biddison W.E., Wiley D.C. Structure of the complex between human T-cell receptor, viral peptide and HLA-A2. Nature, 1996, 384: 134-141.
62. Garboczi D.N., Biddison W.E. Shapes of MHC restriction. Immunity, 1999, 10: 1-7.
63. Parham P. Pictures of MHC restriction. Nature, 1996, 384: 109-110.
64. Garcia K.C., Teyton L., Wilson I.A. Structural basis of T cell recognition. Annu. Rev. Immunol., 1999, 17: 369-397.
65. Morita C.T., Beckman E.M., Bukowski J.F., Tanaka Y., Band H., Bloom B.R., Golan D.E., Brenner M.B. Direct presentation of nonpeptide prenyl pyrophosphate antigens to human gd T cells. Immunity, 1995, 3: 495-507.
66. Morita C.T., Tanaka Y., Bloom B.R., Brenner M.B. Direct presentation of non-peptide prenyl pyrophosphate antigens to human gd T cells. Res.
., 1996, 147: 347-353.
67. Morita C.T., Lee H.K., Leslie D.S., Tanaka Y., Bukowski J.F., Marker- Hermann E. Recognition of nonpeptide prenyl pyrophosphate antigens by human gd T cells. Microbes Infect., 1999, 1: 175-186.
68. Morita C.T., Mariuzza R.A., Brenner M.B. Antigen recognition by human gd T cells: pattern recognition by the adaptive immune system. Springer Semin. Immunopathol., 2000, 22: 191-217.
69. Harrington L.E., Hatton R.D., Mangan P.R., Turner H., Murphy T.L., Murphy K.M., Weaver C.T. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol., 2005, 6: 1123-1132.
70. Ivanov I.I., McKenzie B.S., Zhou L., Tadokoro C.E., Lepelley A., Lafaille J.J., Cua D.J., Littman D.R. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell, 2006, 126: 1121-1133.
71. Weaver C.T., Hatton R.D., Mangan P.R., Harrington L.E. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu. Rev. Immunol., 2007, 25: 821-852.
72. Bucy R.P., Chen C.L., Cihak J., Losch U., Cooper M.D. Avian T cells expressing gamma delta receptors localize in the splenic sinusoids and the intestinal epithelium. J. Immunol., 1988, 141: 2200-2205.
73. Lillehoj H.S. Avian gut-associated immune system: implication in coccidial vaccine development. Poult. Sci., 1993, 72: 1306-1311.
74. Dunon D., Courtois D., Vainio O., Six A., Chen C.H., Cooper M.D., Dangy J.P., Imhof B.A. Ontogeny of the immune system: gamma/delta and alpha/beta T cells migrate from thymus to the periphery in alternating waves. J. Exp. Med., 1997, 186: 977-988.
75. Dunon D., Cooper M.D., Imhof B.A. Thymic origin of embryonic intestinal gamma/delta T cells. J. Exp. Med., 1993, 177: 257-263.
76. Suzuki K., Oida T., Hamada H., Hitotsumatsu O., Watanabe M., Hibi T., Yamamoto H., Kubota E., Kaminogawa S., Ishikawa H. Gut cryptopatches: direct evidence of extrathymic anatomical sites for intestinal T lymphopoiesis. Immunity, 2000, 13: 691-702.
77. Arstila T.P., Toivanen P., Lassila O. Helper activity of CD4+ alpha beta T cells is required for the avian gamma delta T cell response. Eur. J. Immunol., 1993, 23: 2034-2037.
78. Kasahara Y., Chen C.H., Cooper M.D. Growth requirements for avian gamma delta T cells include exogenous cytokines, receptor ligation and in vivo priming. Eur. J. Immunol., 1993, 23: 2230-2236.
79. Berin M.C., McKay D.M., Perdue M.H. Immune-epithelial interactions in host defense. Am. J. Trop. Med. Hyg., 1999, 60: 16-25.
80. Berin M.C., Yang P.C., Ciok L., Waserman S., Perdue M.H. Role for IL-4 in macromolecular transport across human intestinal epithelium. Am. J. Physiol., 1999, 276: C1046-1052.
81. Mehr R., Edelman H., Sehgal D.R.M. Analysis of mutational lineage trees from sites of primary and secondary Ig gene diversification in rabbits and chickens. J. Immunol., 2004, 172: 4790-4796.
82. Clench M.H. The avian cecum: uptake and motility review. J. Exp. Zool., 1999, 283: 441-447.
83. Brummermann M., Braun E.J. Effect of salt and water balance on colonic motility of white leghorn roosters. Am. J. Physiol., 1995, 268: R690-698.
84. Lai H.C., Duke G.E. Colonic motility in domestic turkeys. Am. J. Dig. Dis., 1978, 23: 673-681.
85. Friedman A., Bar Shira E., Sklan D. Ontogeny of gut associated immune competence in the chick. World's Poultry Sci. J., 2003, 59: 209-219.
86. Yamamoto H., Watanabe H., Mikami T. Distribution of immunoglobulin and secretory component containing cells in chickens. Am. J. Vet. Res., 1977, 38: 1227-1230.
87. Mansikka A., Veromaa T., Vainio O., Toivanen P. B-cell differentiation in the chicken: expression of immunoglobulin genes in the bursal and peripheral lymphocytes. Scan. J. Immunol., 1989, 29: 325-331.
88. Sorvari R., Sorvari T.E. Bursal fabricii as a peripheral lymphoid organ. Transport of various materials from the anal lips to the bursal lymphoid follicles with reference to its immunological importance. Immunology, 1978, 32: 499-505.
89. Porter E.M., Bevins C.L., Ghosh D., Ganz T. The multifaceted Paneth cell. Cell. Mol. Life Sci., 2002, 59: 156-170.
90. Nile C.J., Townes C.L., Michailidis G., Hirst B.H., Hall J. Identification of chicken lysozyme g2 and its expression in the intestine. Cell. Mol. Life Sci., 2004, 61: 2760-2766.
91. Gobel T.W., Kaspers B., Stangassinger M. NK and T cells constitute two major, functionally distinct intestinal epithelial lymphocyte subsets in the chicken. Int. Immunol., 2001, 13: 757-762.
92. Lehrer R.I., Ganz T. Endogenous vertebrate antibiotics. Defensins, protegrins, and other cysteine-rich antimicrobial peptides. Ann. NY Acad. Sci., 1996, 797: 228-239.
93. Lehrer R.I., Ganz T. Defensins of vertebrate animals. Curr. Opin. Immunol., 2002, 14: 96-102.
94. Bezuidenhout A.J., Van Aswegen G. A light microscopic and immunocytochemical study of the gastrointestinal tract of the ostrich (Struthio camelus L.). Onderstepoort J. Vet. Res., 1990, 57: 37-48.
95. Brockus C.W., Jackwood M.W., Harmon B.G. Characterization of beta-defensin prepropeptide mRNA from chicken and turkey bone marrow.
Animal Gen
., 1998, 29: 283-289.
96. Lillehoj H.S., Min W., Dalloul R.A. Recent progress on the cytokine regulation of intestinal immune responses to Eimeria. Poult. Sci., 2004, 83: 611-623.
97. Burns R.B., Maxwell M.H. Ultrastructure of Peyer's patches in the domestic fowl and turkey. J. Anat., 1986, 147: 235-243.
98. Casteleyn C., Doom M., Lambrechts E., Van den Broeck W., Simoens P., Cornillie P. Locations of gut-associated lymphoid tissue in the 3-month-old chicken: a review. Avian. Pathol., 2010, 39: 143-150.
99. Gallego M., Del Cacho E., Zapata A., Bascuas J.A. Ultrastructural identification of the splenic follicular dendritic cells in the chicken. Anat. Rec., 1995, 242: 220-224.
100. Jeurissen S.H., Wagenaar F., Janse E.M. Further characterization of M cells in gut-associated lymphoid tissues of the chicken. Poult. Sci., 1999, 78: 965-729.
101. Kitagawa H., Imagawa T., Uehara M. The apical caecal diverticulum of the chicken identified as a lymphoid organ. J. Anat., 1996, 189: 667-672.
102. Kitagawa H., Hiratsuka Y., Imagawa T., Uehara M. Distribution of lymphoid tissue in the caecal mucosa of chickens. J. Anat., 1998, 192(Pt 2): 293-298.
103. Del Cacho E., Gallego M., Sanz A., Zapata A. Characterization of distal lymphoid nodules in the chicken caecum. Anat. Rec., 1993, 237: 512-517.
104. Friedman A., Elad O., Cohen I., Bar Shira E. The gut associated lymphoid system in the post-hatch chick: dynamics of maternal IgA. Israel J. Vet. Med., 2012, 67: 75-81.
105. Masteller E.L., Thompson C.B. B cell development in the chicken. Poult.
., 1994, 73: 998-1011.
106. Masteller E.L., Pharr G.T., Funk P.E., Thompson C.B. Avian B cell development. Int. Rev. Immunol., 1997, 15: 185-206.
107. Bar-Shira E., Sklan D., Friedman A. Establishment of immune competence in the avian GALT during the immediate post-hatch period. Develop. Comp. Immunol., 2003, 27: 147-57.
108. Lawrence E.C., Arnaud-Battandier F., Grayson J., Koski I.R., Dooley N.J., Muchmore A.V., Blaese R.M. Ontogeny of humoral immune function in normal chickens: a comparison of immunoglobulin-secreting cells in bone marrow, spleen, lungs and intestine. Clin. Exp. Immunol., 1981, 43: 450-457.
109. Bar-Shira E., Sklan D., Friedman A. Impaired immune responses in broiler hatchling hindgut following delayed access to feed. Vet. Immunol. Immunopathol., 2005, 105: 33-45.
110. Malkinson M. The transmission of passive immunity to Escherichia coli from mother to young in the domestic fowl (Gallus domesticus). Immunology, 1965, 9: 311-317.
111. Sahin O., Zhang Q., Meitzler J.C., Harr B.S., Morishita T.Y., Mohan R. Prevalence, antigenic specificity, and bactericidal activity of poultry anti-Campylobacter maternal antibodies. Appl. Environ. Microbiol., 2001, 67: 3951-3957.
112. Popiel I., Turnbull P.C. Passage of Salmonella enteritidis and Salmonella thompson through chick ileocecal mucosa. Infect. Immun., 1985, 47: 786-792.
113. Henderson S.C., Bounous D.I., Lee M.D. Early events in the pathogenesis of avian salmonellosis. Infect. Immun., 1999, 67: 3580-3586.
114. Bar-Shira E., Friedman A. Development and adaptations of innate immunity in the gastrointestinal tract of the newly hatched chick. Dev. Comp. Immunol., 2006, 30: 930-941.
115. Staeheli P., Puehler F., Schneider K., Gobel T.W., Kaspers B. Cytokines of birds: conserved functions — a largely different look. J. Interferon Cyt. Res., 2001, 21: 993-1010.
116. Kaiser P., Poh T.Y., Rothwell L., Avery S., Balu S., Pathania U.S., Hughes S., Goodchild M., Morrell S., Watson M., Bumstead N., Kaufman J., Young J.R. A genomic analysis of chicken cytokines and chemokines. J. Interferon Cytokine Res., 2005, 25: 467-484.
117. Bird S., Zou J., Wang T., Munday B., Cunningham C., Secombes C.J. Evolution of interleukin-1[beta]. Cyt. Growth Factor Rev., 2002, 13: 483-502.
118. Ogle C.K., Mao J.X., Wu J.Z., Ogle J.D., Alexander J.W. The production of tumor necrosis factor, interleukin-1, interleukin-6, and prostaglandin E2 by isolated enterocytes and gut macrophages: effect of lipopolysaccharide and thermal injury. J. Burn Care Rehab., 1994, 15: 470-477.
119. Radema S.A., Van Deventer S.J., Cerami A. Interleukin 1 beta is expressed predominantly by enterocytes in experimental colitis. Gastroenterol., 1991, 100: 1180-1186.
120. Wigley P., Kaiser P.  Avian cytokines in health and disease. Brazilian J. Poult. Sci., 2003, 5: 1-14.
121. Coloe P.J., Bagust T.J., Ireland L. Development of the normal gastrointestinal microflora of specific pathogen-free chickens. J. Hyg., 1984, 92: 79-87.
122. Barnes E.M., Impey C.S., Cooper D.M. Manipulation of the crop and intestinal flora of the newly hatched chick. Am. J. Clin. Nutr., 1980, 33: 2426-2433.
123. Sick C., Schneider K., Staeheli P., Weining K.C. Novel chicken CXC and CC chemokines. Cytokine, 2000, 12: 181-186.
124. Kaiser P., Hughes S., Bumstead N. The chicken 9E3/CEF4 CXC chemokine is the avian orthologue of IL8 and maps to chicken chromosome 4 syntenic with genes flanking the mammalian chemokine cluster. Immunogenetics, 1999, 49: 673-684.
125. Martins-Green M. The chicken chemotactic and angiogenic factor (cCAF), a CXC chemokine. Int. J. Biochem. Cell Biol., 2001, 33: 427-432.
126. Petrenko O., Ischenko I., Enrietto P.J. Isolation of a cDNA encoding a novel chicken chemokine homologous to mammalian macrophage inflammatory protein-1[beta]. Gene, 1995, 160: 305-306.
127. Kogut M.H. Dynamics of a protective avian inflammatory response: the role of an IL-8-like cytokine in the recruitment of heterophils to the site of organ invasion by Salmonella enteridis. Comp. Immunol. Microbiol. Infect. Dis., 2002, 25: 159-172.
128. Kogut M.H., Rothwell L., Kaiser P. Priming by recombinant chicken IL-2 induces selective expression of IL-8 and IL-18 mRNA in chicken heterophils during receptor-mediated phagocytosis of opsonized and nonopsonized Salmonella enterica serovar enteridis. Mol. Immunol., 2003, 40: 603-610.
129. Crhanova M., Hradecka H., Faldynova M., Matulova M., Havlickova H., Sisak F., Rychlik I. Immune response of chicken gut to natural colonization by gut microflora and to Salmonella enterica serovar enteritidis infection. Infect. Immun., 2011, 79: 2755-2763.
130. Lan J.G., Cruickshank S.M., Singh J.C., Farrar M., Lodge J.P., Felsburg P.J., Carding S.R. Different cytokine response of primary colonic epithelial cells to commensal bacteria. World J. Gastroenterol., 2005, 11: 3375-3384.
131. Hooper L.V., Midtvedt T., Gordon J.I. How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu. Rev. Nutr., 2002, 22: 283-307.
132. Hooper L.V., Wong M.H., Thelin A., Hansson L., Falk P.G., Gordon J.I. Molecular analysis of commensal host—microbial relationships in the intestine. Science, 2001, 291: 881-884.
133. Mirinics Z.K., Calafat J., Udby L., Lovelock J., Kjeldsen L., Rothermund K., Sisodia S.S., Borregaard N., Corey S.J. Identification of the presenilins in hematopoietic cells with localization of presenilin 1 to neutrophil and platelet granules. Blood Cells Mol. Dis., 2002, 28: 28-38.
134. Fraering P.C., Ye W., Strub J.M., Dolios G., LaVoie M.J., Ostaszewski B.L., Van Dorsselaer A., Wang R., Selkoe D.J., Wolfe M.S. Purification and characterization of the human gamma-secretase complex. Biochemistry, 2004, 43: 9774-9789.
135. Fisinin V.I., Surai P.F. Ptitsevodstvo, 2012, 3: 9-12.
136. Fisinin V.I., Surai P.F. Ptitsevodstvo, 2013 (v pechati).
137. Surai P.F., Fotina T.I. Suchasna Veterinarna Meditsina, 2012, 6: 14-19.
138. Surai K.P., Surai P.F., Speake B.K., Sparks N.H.C. Antioxidant-prooxidant balance in the intestine: Food for thought. 1. Prooxidants. Nutritional Genomics & Functional Foods, 2003, 1: 51-70.
139. Surai K.P., Surai P.F., Speake B.K., Sparks N.H.C. Antioxidant-prooxidant balance in the intestine: Food for thought. 1. Antioxidants. Current Topics in Nutraceutical Research, 2004, 2: 27-46.
140. Surai P.F. Selenium in nutrition and health. Nottingham, UK, 2006.
141. Kettunen H., Peuranen S., Tiihonen K. Betaine aids in the osmoregulation of duodenal epithelium of broiler chicks and affects the movement of water across the small intestinal epithelium in vitro. Comp. Biochem. Physiol. A: Mol. Integr. Physiol., 2001, 129: 595-603.
142. Kettunen H., Tiihonen K., Peuranen S., Saarinen M.T., Remus J.C. Dietary betaine accumulates in the liver and intestinal tissue and stabilizes the intestinal epithelial structure in healthy and coccidia-infected broiler chicks. Comp. Biochem. Physiol. A: Mol. Integr. Physiol., 2001, 130: 759-769.
143. Klasing K.C., Adler K.L., Remus J.C., Calvert C.C. Dietary betaine increases intraepithelial lymphocytes in the duodenum of coccidia-infected chicks and increases functional properties of phagocytes. J. Nutrit., 2002, 132: 2274-2282.
144. Ji C., Shinohara M., Vance D., Than T.A., Ookhtens M., Chan C., Kaplowitz N. Effect of transgenic extrahepatic expression of betaine-homocysteine methyltransferase on alcohol or homocysteine-induced fatty ver. Alcohol. Clin. Exp. Res., 2008, 32: 1049-1058.
145. Ji C., Kaplowitz N. Betaine decreases hyperhomocysteinemia, endoplasmic reticulum stress, and liver injury in alcohol-fed mice. Gastroenterology, 2003, 124: 1488-1499.
146. Samara K., Liu C., Soldevila-Pico C., Nelson D.R., Abdelmalek M.F. Betaine resolves severe alcohol-induced hepatitis and steatosis following liver transplantation. Dig. Dis. Sci., 2006, 51: 1226-1229.
147. Kharbanda K.K., Mailliard M.E., Baldwin C.R., Sorrell M.F., Tuma D.J. Accumulation of proteins bearing atypical isoaspartyl residues in livers of alcohol-fed rats is prevented by betaine administration: effects on protein-L-isoaspartyl methyltransferase activity. J. Hepatol., 2007, 46: 1119-1125.
148. Shi Q.-Z., Wang L.-W., Zhang W., Gong Z.-J. Betaine inhibits Toll-like receptor 4 expression in rats with ethanol-induced liver injury. World J. Gastroenterol., 2010, 16: 897-903.
149. Fortin G. L-Carnitine and intestinal inflammation. Vitam. Horm., 2011, 86: 353-366.
150. Izgüt-Uysal V.N., Agaç A., Karadogan I., Derin N. Effects of L-carnitine on  neutrophil functions in aged rats. Mech. Ageing. Dev., 2003, 124: 341-347.
151. Izgüt-Uysal V.N., Agaç A., Karadogan I., Derin N. Peritoneal macrophages function modulation by L-carnitine in aging rats. Aging. Clin. Exp. Res., 2004, 16: 337-341.
152. Derin N., Agaç A., Bayram Z., Asar M., Izgüt-Uysal V.N. Effects of L-car-
nitine on neutrophil-mediated ischemia-reperfusion injury in rat stomach. Cell Biochem. Funct., 2006, 24: 437-442.
153. Shekhawat P.S., Srinivas S.R., Matern D., Bennett M.J., Boriack R., George V., Xu H., Prasad P.D., Roon P., Ganapathy V. Spontaneous development of intestinal and colonic atrophy and inflammation in the carnitine-deficient jvs (OCTN2(−/−)) mice. Mol. Genet. Metab., 2007, 92: 315-324.
154. Thangasamy T., Jeyakumar P., Sittadjody S., Joyee A.G., Chinnakan
nu P. L-carnitine  mediates protection against DNA damage in lymphocytes of aged rats. Biogerontology, 2009, 10: 163-172.
155. Thangasamy T., Subathra M., Sittadjody S., Jeyakumar P., Joyee A.G., Mendoza E., Chinnakkanu P. Role of L-carnitine in the modulation of immune response in aged rats. Clin. Chim. Acta, 2008, 389: 19-24.
156. Deng K., Wong C.W., Nolan J.V. Long-term effects of early-life dietary L-carnitine on lymphoid organs and immune responses in Leghorn-type chickens. J. Anim. Physiol. Anim. Nutr. (Berl.), 2006, 90: 81-86.
157. Buyse J., Swennen Q., Niewold T.A., Klasing K.C., Janssens G.P., Baumgartner M., Goddeeris B.M. Dietary L-carnitine supplementation enhances the lipopolysaccharide-induced acute phase protein response in broiler chickens. Vet. Immunol. Immunopathol., 2007, 118: 154-159.
158. Celik L., Oztürkcan O. Effects of dietary supplemental L-carnitine and ascorbic acid on performance, carcass composition and plasma L-carnitine concentration of broiler chicks reared under different temperature. Arch. Tierernahr., 2003, 57: 27-38.
159. Celik L., Oztürkcan O., Inal T.C., Canacankatan N., Kayrin L. Effects of L-carnitine and niacin supplied by drinking water on fattening performance, carcass quality and plasma L-carnitine concentration of broiler chicks. Arch. Tierernahr., 2003, 57: 127-136.
160. Kheirkhah A.R., Rahimi S., Torshizi M.A.K., Malekmohamadi H. Effect of different levels of L-carnitine supplementation in broiler breeders and their progeny's diets on performance, blood factors, carcass characteristics and immune system of broilers. J. Vet. Res., 2009, 64: 283-289.
161. Mucida D., Park Y., Cheroutre H. From the diet to the nucleus: vitamin A and TGF-b join efforts at the mucosal interface of the intestine. Semin. Immunol., 2009, 21: 14-21.
162. Iwata M., Hirakiyama A., Eshima Y., Kagechika H., Kato C., Song S.Y. Retinoic acid imprints gut-homing specificity on T cells. Immunity, 2004, 21: 527-538.
163. Cassani B., Villablanca E.J., De Calisto J., Wang S., Mora J.R. Vitamin A and immune regulation: role of retinoic acid in gut-associated dendritic cell education, immune protection and tolerance. Mol. Aspects Med., 2012, 33: 63-76.
164. Feng T., Cong Y., Qin H., Benveniste E.N., Elson C.O. Generation of mucosal dendritic cells from bone marrow reveals a critical role of retinoic acid. J. Immunol., 2010, 185: 5915-5925.
165. Yamaguchi T., Hirota K., Nagahama K., Ohkawa K., Takahashi T., Nomura T., Sakaguchi  S. Control of immune responses by antigen-specific regulatory T cells expressing the folate receptor. Immunity, 2007, 27: 145-159.
166. Kunisawa J., Hashimoto E., Ishikawa I., Kiyono H. A pivotal role of vitamin B9 in the maintenance of regulatory T cells in vitro and in vivo. PLoS One, 2012, 7(2): E32094.
167. Lallès J.P., Bosi P., Janczyk P., Koopmans S.J., Torrallardona D. Impact of bioactive substances on the gastrointestinal tract and performance of weaned piglets: a review. Animal, 2009, 3: 1625-1643.
168. Fisinin V.I., Surai P.F. Ptitsevodstvo, 2012, 2: 11-15.
169. Surai P.F., Dvorska J.E. Effects of mycotoxins on antioxidant status and immunity. In: The Mycotoxins Blue Book /D.E. Diaz (ed.). Nottingham University Press, 2005: 93-137.
170. Fisinin V.I., Surai P.F. Zhivotnovodstvo Rossii,2012, 5: 11-14.
171. Fisinin V.I., Surai P.F. Zhivotnovodstvo Rossii,2012, 6: 3-5.
172. Fisinin V.I., Surai P.F. Kombikorma, 2012, 5: 59-60.
173. Fisinin V.I., Surai P.F. Kombikorma, 2012, 5: 59-60.
174. Fisinin V.I., Surai P.F. Ptitsa i ptitseprodukty, 2012, 3: 38-41.
175. Fisinin V.I., Surai P.F. Ptitsa i ptitseprodukty, 2012, 4: 36-39.
176. Surai P.F., Fisinin V.I. Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2012, 4: 3-13.