PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2021.3.450eng

UDC: 633.11:631.52

Acknowledgements: The
Supported financial frоm the Ministry of Agriculture of the Russian Federation

 

LARGE-GRAINED WHEATGRASS VARIETY SOVA (Thinopyrum intermedium) AS AN ALTERNATIVE TO PERENNIAL WHEAT

V.P. Shamanin1, A.I. Mоrgounоv1, A.N. Aydarov1, S.S. Shepelev1,
A.S. Chursin1, I.V. Pototskaya1 , O.F. Khamova2, L.R. DeHaan3

1Stolypin Omsk State Agrarian University, 1, Institutskaya pl., Omsk, 644008 Russia, e-mail vp.shamanin@оmgau.оrg, an.aydarov35.06.01@оmgau.оrg, sergeysсhepelew@mail.ru, as.chursin@оmgau.оrg, iv.pоtоtskaya@оmgau.оrg (corresponding author ✉);
2Omsk Agrarian Scientific Center, 26,Korolev pr., Omsk, 644012 Russia, e-mail olkhaa48@mail.ru;
3The Land Institute, 2440 E. Water Well Rd., Salina, KS 67401, USA, e-mail dehaan@landinstitute.org

ORCID:
Shamanin V.P. orcid.org/0000-0003-4767-9957
Chursin A.S. orcid.org/0000-0001-6797-6145
Morgоunov A.I. orcid.org/0000-0001-7082-5655
Pototskaya I.V. orcid.org/0000-0003-3574-2875
Aydarov A. orcid.org/0000-0003-1031-3417
Khamova O.F. orcid.org/0000-0002-0236-0304
Shepelev S.S. orcid.org/0000-0002-4282-8725
DeHaan LR. orcid.org/0000-0002-6368-5241

Received August 20, 2020

For the last decades, due to climate warming, environmental threats, increasing of energy intensity of the grain production, wider usage of perennial cultures as an alternative to annual agricultural cultures, more resistant to negative biotic and abiotic environmental factors has been proposed. The large-grained wheatgrass variety Sova was created at Omsk State Agrarian University via mass selection of wintered biotypes from the population of Thinopyrum intermedium (Host) Barkworth & D.R. Dewey obtained from The Land Institute (Kansas, USA), with following targeted cross-pollination and creation of new winter-hardy population. In 2020, the variety was registered in the State register of breeding achievements approved for use for all regions of the Russian Federation. For the first time, the biological and economical significance of the large-grained wheatgrass variety Sova as an alternative to perennial wheat is presented in this work. The variety Sova of Thinopyrum intermedium is recommended for cultivation as grain and fodder crop during four-six years, the variety forms grain with high protein content and good quality hay. The goal of this research is evaluation of economically valuable traits of new large-grain wheatgrass variety Sova under conditions of southern forest-steppe of Western Siberia, as well as to determine the correlation of spike components with plant height for increasing of the selection efficiency and thousand kernel weight. The research was carried out in the experimental field of Omsk State Agrarian University under conditions of the southern forest-steppe of Western Siberia in 2015-2019. A new wheatgrass variety Sova (Thinopyrum intermedium), winter bread wheat (Triticum aestivum L.) cv. Omskaya 4, and spring bread wheat (T. aestivum L.) cvs. Element 22 and Pamyati Azieva were compared. The spike productivity traits of 100 spikes of wheatgrass, i.e., spike weight and length, number of spikelets and grains per spike, grain weight per spike, etc., were evaluated. The thousand kernel weight and spike harvest index were calculated. The grain yield and biomass were determined. The correlations of productivity components with plant height were analyzed. The grain morphometric parameters of variety Sova and spring bread wheat Pamyati Aziev (area, perimeter, length, width, and circularity) were compared. The grain and hay quality was evaluated. For wheatgrass (Thinopyrum intermedium), winter wheat variety Omskaya 4, and spring variety Element 22, the length, width, average diameter, volume, main area, number of root tips, and total root length were determined. The biological activity of the rhizosphere of Thinopyrum intermedium compared to winter wheat variety Omskaya 4, and spring bread wheat variety Element 22 was evaluated. The soil samples for accounting of microorganisms were taken in the shoots phase, after winter survival, and in the heading phase. It was found that grain yield, biomass, and hay of the variety Sova for three years of reproduction increased every year and averaged 9.2, 210.3, and 71.0 centner per hectare, respectively. Grain quality indicators were high, the 19.4 % protein and 36.3 % gluten content. The variety Sova has many grains per spike, on average more than 50, thousand kernel weight is 9.7 g, and spike harvest index is 51 %. The length of all roots of Thinopyrum intermedium was 6.9-9.8 times longer compared to that of winter and spring varieties. The total number of agronomically important groups of microorganisms was 2.2 times higher, the intensity of mineralization (abundance of microorganism on starch ammonia agar to meat peptone agar SAA/MPA) was 58 % higher than in winter wheat variety Omskaya 4. The rate of cellulose decomposition was 13.7 and 21.4 % higher than in winter and spring wheat varieties. According to the studying the correlations between thousand kernel weight, plant height, and productivity traits suggest that the selection of biotypes with shorter stem, fewer spikelets and grains per spike is appropriate for grain weight increasing.

Keywоrds: Thinopyrum intermedium, spring wheat, winter wheat, breeding, perennial cultures, Sova variety, spike, valuable traits, correlations, yield, grain, hay, grain quality, roots, rhizosphere microorganisms.

 

REFERENCES

  1. de Oliveira G., Brunsell N.A., Crews T.E., DeHaan L.R., Vico G. Carbon and water relations in perennial Kernza (Thinopyrum intermedium): an overview. Plant Science, 2020, 295 CrossRef
  2. Glover J.D., Reganold J.P., Bell L.W., Borevitz J., Brummer E.C., Buckler E.S., Cox C.M., Cox T.S., Crews T.E., Culman S.W., DeHaan L.R., Eriksson D., Gill B.S., Holland J., Hu F., Hulke B.S., Ibrahim A.M.H., Jackson W., Jones S.S., Murray S.C., Paterson A.H., Ploschuk E., Sacks E.J., Snapp S., Tao D., Van Tassel D.L., Wade L.J., Wyse D.L., Xu Y. Increased food and ecosystem security via perennial grains. Science, 2010, 328(5986): 1638-1639 CrossRef
  3. DeHaan L.R., Larson S., López-Marqués R.L., Wenkel S., Gao C., Palmgren M. Roadmap for accelerated domestication of an emerging perennial grain crop. Trends in Plant Science, 2020, 25(6): 525-537 CrossRef
  4. DeHaan L.R., Ismall B.R. Perennial cereals provide ecosystem benefits. Cereal Foods World, 2017, 62(6): 278-281 CrossRef
  5. Цицин Н.В. Отдаленная гибридизация растений. М., 1954.
  6. Цицин Н.В. Многолетняя пшеница. М., 1978.
  7. Suneson C., El Sharkawy A., Hall W.E. Progress in 25 years of perennial wheat breeding. CropScience, 1963, 3(5): 437-439 CrossRef
  8. Упелниек В.П., Белов В.И., Иванова Л.П., Долгова С.П., Демидов А.С. Наследие академика Н.В. Цицина — современное состояние и перспективы использования коллекции промежуточных пшенично-пырейных гибридов. Вавиловский журнал генетики и селекции, 2012, 16(3): 667-674.
  9. Sibikeev S.N., Voronina S.A., Krupnov V.A. Genetic control for resistance to leaf rust in wheat-Agropyron lines: Agro 139 and Agro 58. Theor. Appl. Genet., 1995, 90(5): 618-620 CrossRef
  10. Sipos T., Halasz E. The role of perennial rye (Secale cereale x S. montanum) in sustainable agriculture. Cereal Research Communications, 2007, 35(2): 1073-1075 CrossRef
  11. Mujeeb-Kazi A., Cortes A., Gul A., Farooq M., Majeed F. Ahmad I., Bux H., William M., Rosas V., Delgad R. Production and cytogenetics of a new Thinopyrum elongatum/Triticum aestivum hybrid, its amphiploid and backcross derivatives. Pakistan Journal of Botany, 2008, 40(2): 565-579.
  12. Salina E.A., Adonina I.G., Badaeva E.D., Kroupin P., Stasyuk A., Leonova I.N., Shishkina A., Divashuk M.G., Starikova E., Khuat T.M.L., Syukov V., Karlov G. A Thinopyrum intermedium chromosome in bread wheat cultivars as a source of genes conferring resistance to fungal diseases. Euphytica, 2015, 204(1): 91-101 CrossRef
  13. Hayes, R.C., Wang S., Newell M.T., Turner K., Larsen J., Gazza L., Anderson J.A., Bell L.W., Cattani D.J., Frels, K., Galassi E., Morgounov A.I., Revell C.K., Thapa D.B., Sacks E.J., Sameri M., Wade L.J., Westerbergh A., Shamanin V., Amanov A., Li G.D. The performance of early-generation perennial winter cereals at 21 sites across four continents. Sustainability, 2018, 10(4): 1124 CrossRef
  14. Hayes R.C., Newell M.T., DeHaan L.R., Murphy K.M., Crane S., Norton M.R., Wade L.J., Newberry M., Fahim M., Jones S.S., Cox T.S., Larkin P.J. Perennial cereal crops: an initial evaluation of wheat derivatives. Field Crops Research. 2012, 133: 68-89 CrossRef
  15. McFadden E.S., Sears E.R. The origin of Triticum spelta and its free-threshing hexaploid relatives. Journal of Heredity, 1946, 37(3): 81-89 CrossRef
  16. Harlan J.R., deWit J.M.J. Toward a rational classification of cultivated plants. Taxon, 1971, 20(4): 509-517 CrossRef
  17. Mujeeb-Kazi A., Hettel G.P. Utilizing wild grass biodiversity in wheat improvement: 15 years of wide cross research at CIMMYT. Mexico, 1995.
  18. Curtin S.J., Voytas D.F., Stupar R.M. Genome engineering of crops with designer nucleases. The Plant Genome, 2012, 5(2): 42-50 CrossRef
  19. Becker R., Wagoner P., Hanners, G.D., Saunders, R.M. Compositional, nutritional and functional-evaluation of intermediate wheatgrass (Thinopyrum intermedium). Journal of Food Processing and Preservation, 1991, 15(1): 63-77 CrossRef
  20. Rahardjo C.Р., Gajadeera C.S., Simsek S., Annor G.A., Schoenfuss T.C., Marti A., Ismail B.P. Chemical characterization, functionality, and baking quality of intermediate wheatgrass (Thinopyrum intermedium). Journal of Cereal Science, 2018, 83(4): 266-274 CrossRef  
  21. Tyl C.E., Ismail B.P. Compositional evaluation of perennial wheatgrass (Thinopyrum intermedium) breeding populations. International Journal of Food Science & Technology, 2019, 54(3): 660-669 CrossRef
  22. Dick C., Cattani D., Entz M.H. Kernza intermediate wheatgrass (Thinopyrum intermedium) grain production as influenced by legume intercropping and residue management. Canadian Journal of Plant Science, 2018, 98(6): 1376-1379 CrossRef
  23. Клупт С.Е., Хетагурова Ф.В., Частухин В.Я., Аристовская Т.В., Владимирская М.Е., Селибер Г.Л., Норкина С.П., Катанская Г.А., Лозина-Лозинский Л.К., Скалон И.С., Кашкин П.Н., Румянцева В.М., Скородумова А.М., Голлербах М.М. Большой практикум по микробиологии: учебное пособие / Под общ. ред. Г.Л. Селибера. М., 1962.
  24. Аринушкина Е.В. Руководство по химическому анализу почв. М., 1970.
  25. Теппер Е.З., Шильникова В.К., Переверцева Г.И. Практикум по микробиологии. 4-е изд., перераб. и доп. М., 1993.
  26. Доспехов Б.A. Методикaполевого опытa(с основaми статистической обработки результатов исследований). М., 1985.
  27. Клевенская И.Л. Олигонитрофильные микроорганизмы почв Западной Сибири. Новосибирск, 1974.
  28. Синдирева А.В., Бобренко И.А. Методы экологических исследований: уч. пос. Омск, 2016.
  29. Коробова Л.Н., Танатова А.В., Ферапонтова С.А., Шинделов А.В. Научно-методические рекомендации по использованию микробиологических показателей для оценки состояния пахотных почв Сибири. Новосибирск, 2013.
  30. Тихомирова Л.Д. Способ определения эффективного плодородия почвы. А.с. 338196 (СССР) М. Кл. А. 01g 7/00. № 1432987/30-15. Заявл. 10.04.70. Опубл. 15.05.72. Бюл. № 16.
  31. Jackson W. New Roots for Agriculture. University of Nebraska Press, Lincoln, 1980.
  32. DeHaan L., Christians M., Crain J., Poland J. Development and evolution of an intermediate wheatgrass domestication program. Sustainability, 2018, 10(5): 1499 CrossRef
  33. Bell L.W., Byrne F., Ewing M.A., Wade L.J. A preliminary whole-farm economic analysis of perennial wheat in an Australian dryland farming system. Agricultural Systems, 2008, 96 (1-3): 166-174 CrossRef
  34. Marti A., Bock J.E., Pagani M.A., Ismail B., Seetharaman K. Structural characterization of proteins in wheat flour doughs enriched with intermediate wheatgrass (Thinopyrum intermedium) flour. Food Chemistry, 2016, 194: 994-1002 CrossRef
  35. Hřivna L., Zigmundová V., Burešová I., Maco R., Vyhnánek T., Trojan V. Rheological properties of dough and baking quality of products using coloured wheat. Plant Soil and Environ., 2018, 64(5): 203-208 CrossRef
  36. Vico G., Brunsell N.A. Tradeoffs between water requirements and yield stability in annual vs. perennial crops. Advances in Water Resources, 2017, 112: 189-202 CrossRef
  37. Jacoby R., Peukert M., Succurro A., Koprivova A., Kopriva S. The role of soil microorganisms in plant mineral nutrition — current knowledge and future directions. Front. Plant Sci., 2017, 19(8): 1617 CrossRef
  38. Hassan M.K., McInroy J.A., Kloepper J.W. The interaction of Rhizodeposits with plant growth-promoting Rizobacteria in the rizosphere: a review. Agriculture, 2019, 9: 142 CrossRef
  39. DuPont S.T., Beniston J., Glover J.D., Hodson A., Culman S.W., Lal R., Ferris H. Root traits and soil properties in harvested perennial grassland, annual, and never-tilled annual wheat. Plant Soil, 2014, 381(1-2): 405-420 CrossRef
  40. Duchene O., Celette F., Barreiro A., Dimitrova Martensson L.-M., Freschet G.T., David C. Introducing perennial grain in grain crops rotation: the role of rooting pattern in soil quality management. Agronomy, 2020, 10(9): 1254 CrossRef
  41. McKenna T.P., Crews T.E., Kemp L., Sikes B.A. Community structure of soil fungi in a novel perennial crop monoculture, annual agriculture, and native prairie reconstruction. PLoS ONE, 2020, 15(1): e0228202 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)