PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2020.3.606eng

UDC: 635.8:577.1

Acknowledgements:
The authors express gratitude to Prof. A.N. Pankratov (Institute of Chemistry, Chernyshevskii Saratov State National Research University) for research-organizing efforts.

 

HOW THE BASIDIOMYCETES RESPOND TO BIOGENIC ASPARTATE-BOUND METALS(II) OF VARIABLE VALENCY IN GROWTH MEDIA

O.M. Tsivileva1, A.N. Shaternikov1, V.V. Fadeev1, E.V. Lyubun1,
V.G. Amelin2, S.P. Voronin3, A.P. Gumenyuk3, V.E. Nikitina1

1Institute of Biochemistry and Physiology of Plants and Microorganisms RAS, 13, pr. Entuziastov, Saratov, 410049 Russia, e-mail tsivileva@ibppm.ru (✉ corresponding author), andrejsh93@gmail.com, vvf2593@gmail.com, lyubun@ibppm.ru, nikitina_v@ibppm.ru;
2Alexander and Nilkolay Stoletovs Vladimir State University, 87, ul. Gor’kogo, Vladimir, 600000 Russia, e-mail amelinvg@mail.ru;
3AO «Bioamid» 27, ul. Mezhdunarozhnaya, Saratov, 410033 Russia, e-mail bioamid@yandex.ru

ORCID:
Tsivileva O.M. orcid.org/0000-0002-5269-349X
Shaternikov A.N. orcid.org/0000-0002-1364-1902
Fadeev V.V. orcid.org/0000-0002-9725-3439
Lyubun E.V. orcid.org/0000-0002-8814-6949
Amelin V.G. orcid.org/0000-0001-7477-7398
Voronin S.P. orcid.org/0000-0002-3530-1001
Gumenyuk A.P. orcid.org/0000-0002-1147-088X
Nikitina V.E. orcid.org/0000-0003-2687-7890

Received October 21, 2019

 

Current studies on artificial mushroom cultivation are aimed at optimizing mineral nutrition and the delivery of metals(II). Organically bound trace metals are superior to their inorganic precursors. Cu, Mn, Fe, Zn, and Co metal(II) complexation with essential amino acids seems to be a solution to the bioavailability problem, thus making amino acid chelates of biogenic metals relevant for study. In particular, aspartic acid salts potentially could improve cultivable mushroom growing due to use of bioavailable organic compounds of microelements. However, a comprehensive study on mineral nutrition of cultivated mushrooms using biogenic metal chelates has not been conducted previously. This paper is the first to discover and characterize the effect of metal(II) aspartates on growth, biochemical response, antibacterial activity of mycelium submerged cultures, and fruiting-body formation in basidiomycetes Ganoderma lucidum strain 1315, Grifola umbellate strain 1622, Laetiporus sulphureus strain 120707, Lentinula edodes strain F-249, and Pleurotus ostreatus strains 69, BK1702 and HK352. The work was aimed at elucidating and comparing action of the variable-valent metal(II) aspartates on the physiological and biochemical parameters of the basidiomycetes. Glucose- and wheat powder-based nutrient media supplemented with 1×10-4 mol/l Cu(II), Mn(II), Fe(II), Zn(II), and Co(II) aspartates were used to grow mycelia in submerged culture, comparing growth parameters and production of fruiting bodies. Media without any supplements or with 2×10-4 mol/l L-aspartic acid were control. Antimicrobial activity of the metal-containing biosamples against phytopathogenic bacteria Micrococcus luteus B-109, Pectobacterium carotovorum subsp. сarotovorum (strains 603 and MI), Pectobacterium atrosepticum1043, Pseudomonas fluorescens EL-2.1, Xanthomonas campestris B-610 was determined by agar well diffusion method. A pool of secondary metabolites was analyzed by high performance liquid chromatography/high resolution time-of-flight mass-spectrometry method. Metal levels in specimens were quantified by atomic absorption spectroscopy technique. The fruiting body formation was tested in the lab and upon commercial growing. In lab tests, it was established that amino acid chelates of biogenic metals(II) intensify mycelium growth in liquid-submerged culture and fruiting body formation. Chelates of copper, manganese, zinc, and to a lesser extent iron, exhibited the significant growth-promoting effect on the basidiomycetes' mycelium under the submerged culture conditions, especially in respect to lacquered polypore, umbrella polypore, and sulfur-yellow polypore. The additives of Cu(Asp)2, Mn(Asp)2, Zn(Asp)2 showed only slight stimulation or even inhibition of P. ostreatus 69 growth. Aspartic acid caused a suppressing impact on mycelia accumulation, regardless of the basidiomycetes' taxonomic characteristics. At the oyster mushroom fermentation in the presence of biogenic metal aspartates, the interstrain distinctions occurred among rapidly and slower growing cultures in relation to the metal chelates' exogenic action. Thus, in assays with Cu(Asp)2 and Zn(Asp)2, the strain P. ostreatus BK1702 had an advantage over others in accumulating biomass. Manganese chelate exerted the most profound positive effect on the fast-growing strain P. ostreatus HK352. The latter, however, was suppressed in its development to the greatest extent compared with BK1702 or 69, when the cobalt organic salt appeared in the liquid medium. Earlier we discussed in detail the items related to these substances' increased level resulted from the exogenic action of some compounds. As a biochemical response of cultures to the above aspartates occurrence in the starting nutrient media, the organic substances with double bond, which were not detected in the absence of the same additives, appeared in the growth liquid. These substances were aromatic alcohol 2-phenylethanol, as well as para-hydroxyphenylacetic acid, the latter's maximal extracellular concentration evaluated by the analytical signal being observed at Mn(Asp)2 introduction. According to the data we gathered by physicochemical research, the metal(II) aspartates, notably Mn(Asp)2, Cu(Asp)2 in the growth liquid induced the increased level of 5-hydroxymethyl-2-furaldehyde, dihydropyrone (structurally similar to kojic acid), para-hydroxyphenylacetic acid, which antioxidative properties are important for mushroom culture. Positive impact of the certain combinations of Mn(II), Cu(II), Fe(II), Zn(II) chelate compounds on P. ostreatus vital functions could be efficiently used for elaborating upon scientific foundations and developing the technology of mushroom mineral nutrition, including wide-scale growing. Biogenic metal aspartates could serve as the active ingredient in biopreparations for commercial mushroom culture. Oyster mushroom fruit bodies and mycelium parameters provided by the aspartates implementation allowed us to propose manganese(II) chelate for put into practice.

Keywords: basidiomycetes, physiological and biochemical features, biometals, amino acid chelates, aspartates.

 

REFERENCES

  1. Ogidi C.O., Oyetayo V.O., Akinyele B.J., De Carvalho C.A., Kasuya M.C.M. Food value and safety status of raw (unfermented) and fermented higher basidiomycetes, Lenzites quercina (L.) P. Karsten. Preventive Nutrition and Food Science, 2018, 23(3): 228-234 CrossRef
  2. Rathore H., Prasad S., Kapri M., Tiwari A., Sharma S. Medicinal importance of mushroom mycelium: mechanisms and applications. Journal of Functional Foods, 2019, 56: 182-193 CrossRef
  3. Guo L.-Q., Lin J.-Y., Lin J.-F. Non-volatile components of several novel species of edible fungi in China. Food Chemistry, 2007, 100(2): 643-649 CrossRef
  4. Akyüz M., Kirbağ S. Effect of various agro-residues on nutritive value of Pleurotus eryngii (DC. ex Fr.) Quel. var. ferulae Lanzi. Journal of Agricultural Sciences, 2010, 16: 83-88.
  5. Figlas D., Oddera M., Curvetto N. Bioaccumulation and bioavailability of copper and zinc on mineral-enriched mycelium of Grifola frondosa. Journal of Medicinal Food, 2010, 13(2): 469-475 CrossRef
  6. Matute R.G., Serra A., Figlas D., Curvetto N. Copper and zinc bioaccumulation and bioavailability of Ganoderma lucidum. Journal of Medicinal Food, 2011, 14(10): 1273-1279 CrossRef
  7. Poursaeid N., Azadbakht A., Balali G.R. Improvement of zinc bioaccumulation and biomass yield in the mycelia and fruiting bodies of Pleurotus florida cultured on liquid media. Applied Biochemistry and Biotechnology, 2015, 175(7): 3387-3396 CrossRef
  8. Liu J., Bao W., Jiang M., Zhang Y., Zhang X., Liu L. Chromium, selenium, and zinc multimineral enriched yeast supplementation ameliorates diabetes symptom in streptozocin-induced mice. Biological Trace Element Research, 2012, 146(2): 236-245 CrossRef
  9. Zafar M.H., Fatima M. Efficiency comparison of organic and inorganic minerals in poultry nutrition: a review. PSM Veterinary Research, 2018, 3(2): 53-59.
  10. Gharibzahedi S.M.T., Jafari S.M. The importance of minerals in human nutrition: bioavailability, food fortification, processing effects and nanoencapsulation. Trends in Food Science & Technology, 2017, 62: 119-132 CrossRef
  11. Egorova K.S., Ananikov V.P. Toxicity of metal compounds: knowledge and myths. Organometallics, 2017, 36(21): 4071-4090 CrossRef
  12. Tuhy Ł., Samoraj M., Michalak I., Chojnacka K. The application of biosorption for production of micronutrient fertilizers based on waste biomass. Applied Biochemistry and Biotechnology, 2014, 174(4): 1376-1392 CrossRef
  13. Witkowska Z., Rusek P., Witek-Krowiak A., Chojnacka K., Tuhy Ł., Samoraj M. Production of dietary feed supplements enriched in microelements in a pilot plant biosorption system. International Journal of Environmental Science and Technology, 2016, 13(4): 1089-1098 CrossRef
  14. Gins M., Gins V., Motyleva S., Kulikov I., Medvedev S., Kononkov P., Pivovarov V. Mineral composition of amaranth (Amaranthus L.) seeds of vegetable and grain usage by ARHIVBSP selection. Potravinarstvo Slovak Journal of Food Sciences, 2018, 12(1): 330-336 CrossRef
  15. Beshkenadze I., Chagelishvili A., Begheluri G., Zhorzholiani N., Gogaladze M., Urotadze S., Klarjeishvili N. New generation premixes for rabbit nutrition. Annals of Agrarian Science, 2016, 14(4): 288-291 CrossRef
  16. De Marco M., Zoon M.V., Margetyal C., Picart C., Ionescu C. Dietary administration of glycine complexed trace minerals can improve performance and slaughter yield in broilers and reduces mineral excretion. Animal Feed Science and Technology, 2017, 232: 182-189 CrossRef
  17. Canaj A.B., Kakaroni F.E., Collet A., Milios C.J. a-Amino acids: natural and artificial building blocks for discrete polymetallic clusters. Polyhedron, 2018, 151: 1-32 CrossRef
  18. Yu X., Chau M.C., Tang W.K., Siu C.K., Yao Z.P. Self-assembled binuclear Cu(II)-histidine complex for absolute configuration and enantiomeric excess determination of naproxen by tandem mass spectrometry. Analytical Chemistry, 2018, 90(6): 4089-4097 CrossRef
  19. Sajadi S.A.A. Metal ion-binding properties of the L-aspartic acid and tartaric acid, a coparative investigation. How can be increased the dosage of mineral absorption in the body. Advances in Bioscience and Biotechnology, 2010, 1(4): 354-360 CrossRef
  20. Boles G.C., Hightower R.L., Coates R.A., McNary C.P., Berden G., Oomens J., Armentrout P.B. Experimental and theoretical investigations of infrared multiple photon dissociation spectra of aspartic acid complexes with Zn2+ and Cd2+. The Journal of Physical Chemistry B, 2018, 122(14): 3836-3853 CrossRef
  21. Murphy J.M., Gaertner A.A., Williams T., McMillen C.D., Powell B.A., Brumaghim J.L. Stability constant determination of sulfur and selenium amino acids with Cu(II) and Fe(II). Journal of Inorganic Biochemistry, 2019, 195: 20-30 CrossRef
  22. Künzle M., Eckert T., Beck T. Metal-assisted assembly of protein containers loaded with inorganic nanoparticles. Inorganic Chemistry, 2018, 57(21): 13431-13436 CrossRef
  23. Hamley I.W. Protein assemblies: nature-inspired and designed nanostructures. Biomacromolecules, 2019, 20(5): 1829-1848 CrossRef
  24. Garg M., Sharma N., Sharma S., Kapoor P., Kumar A., Chunduri V., Arora P. Biofortified crops generated by breeding, agronomy, and transgenic approaches are improving lives of millions of people around the world. Frontiers in Nutrition, 2018, 5: 12 CrossRef
  25. Biswal B.K., El Sadany M., Kumari D., Sagar P., Singhal N.K., Sharma S., Stobdan T., Shanmugam V. Twin function of zein–zinc coordination complex: wheat nutrient enrichment and nanoshield against pathogenic infection. ACS Sustainable Chemistry & Engineering, 2018, 6(5): 5877-5887 CrossRef
  26. Ohata J., Martin S.C., Ball Z.T. Metal-mediated functionalization of natural peptides and proteins: panning for bioconjugation gold. Angewandte Chemie International Edition, 2019, 58(19): 6176-6199 CrossRef
  27. Tsivileva O.M., Perfil'eva A.I., Ivanova A.A., Pavlova A.G. Biomika, 2018, 10(2): 210-213 CrossRef (in Russ.).
  28. Voronin S.P., Golubov I.I., Gumenyuk A.P., Sinolitskii M.K. Biodostupnaya forma mikroelementnykh dobavok v kormovye smesi dlya zhivotnykh i ptits. Pat. 2411747 (RF). Zayavl. 25.12.2008. Opubl. 20.02.2011. Byul. № 5 [A bioavailable form of trace element-based additives to feed for animals and birds. Patent 2411747 (RF). Appl. 25.12.2008. Publ. 20.02.2011. Bull. № 5] (in Russ.).
  29. Stamets P. Growing gourmet and medicinal mushrooms. Berkeley, 1993.
  30. Amelin V.G., Korotkov A.I., Volkova N.M. High-resolution time-of-flight mass spectrometry combined with high-performance liquid chromatography for detection and determination of quinolones and sulfonamides in foods. Journal of Analytical Chemistry, 2015, 70(14): 1629-1634 CrossRef
  31. Amelin V.G., Andoralov A.M., Volkova N.M., Korotkov A.I., Nikeshina T.B., Sidorov I.I., Timofeev A.A. Analitika i kontrol', 2015, 19(2): 189-207 CrossRef (in Russ.).
  32. Hansda A., Kumar V., Anshumali. A comparative review towards potential of microbial cells for heavy metal removal with emphasis on biosorption and bioaccumulation. World Journal of Microbiology and Biotechnology, 2016, 32(10): 170 CrossRef
  33. Javanbakht V., Alavi S.A., Zilouei H. Mechanisms of heavy metal removal using microorganisms as biosorbent. Water Science and Technology, 2014, 69(9): 1775-1787 CrossRef
  34. Rabinovich M., Figlas D., Delmastro S., Curvetto N. Copper-and zinc-enriched mycelium of Agaricus blazei Murrill: bioaccumulation and bioavailability. Journal of Medicinal Food, 2007, 10(1): 175-183 CrossRef
  35. Kachlishvili E., Asatiani M.D., Kobakhidze A., Elisashvili V. Evaluation of lignin-modifying enzyme activity of Trametes spp. (Agaricomycetes) isolated from Georgian forests with an emphasis on T. multicolor biosynthetic potential. International Journal of Medicinal Mushrooms, 2018, 20(10): 971-987 CrossRef
  36. Lin T.Y., Tseng A.J., Chao C.H., Lu M.K. Microelements induce changes in characterization of sulfated polysaccharides from Antrodia cinnamomea. International Journal of Biological Macromolecules, 2018, 120(A): 952-958 CrossRef
  37. Majesty D., Ijeoma E., Winner K., Prince O. Nutritional, anti-nutritional and biochemical studies on the oyster mushroom, Pleurotus ostreatus. EC Nutrition, 2019, 14(1): 36-59.
  38. Mutukwa I.B., Hall III C.A., Cihacek L., Lee C.W. Evaluation of drying method and pretreatment effects on the nutritional and antioxidant properties of oyster mushroom (Pleurotus ostreatus). Journal of Food Processing and Preservation, 2019, 43(4): e13910 CrossRef
  39. Nam W.L., Phang X.Y., Su M.H., Liew R.K., Ma N.L., Rosli M.H.N.B., Lam S.S. Production of bio-fertilizer from microwave vacuum pyrolysis of palm kernel shell for cultivation of Oyster mushroom (Pleurotus ostreatus). Science of The Total Environment, 2018, 624: 9-16 CrossRef
  40. Phan C.W., Wang J.K., Tan E.Y.Y., Tan Y.S., Sathiya Seelan J.S., Cheah S.C., Vikineswary S. Giant oyster mushroom, Pleurotus giganteus (Agaricomycetes): current status of the cultivation methods, chemical composition, biological, and health-promoting properties. Food Reviews International, 2019, 35(4): 324-341 CrossRef
  41. Sangeetha K., Senthilkumar G., Panneerselvam A., Sathammaipriya N. Cultivation of oyster mushroom (Pleurotus sp.) using different substrates and evaluate their potentials of antibacterial and phytochemicals. International Journal of Research in Pharmaceutical Sciences, 2019, 10(2), 997-1001 CrossRef
  42. Vetvicka V., Gover O., Karpovsky M., Hayby H., Danay O., Ezov N., Hadar Y., Schwartz B. Immune-modulating activities of glucans extracted from Pleurotus ostreatus and Pleurotus eryngii. Journal of Functional Foods, 2019, 54: 81-91 CrossRef
  43. Zhu B., Li Y., Hu T., Zhang Y. The hepatoprotective effect of polysaccharides from Pleurotus ostreatus on carbon tetrachloride-induced acute liver injury rats. International Journal of Biological Macromolecules, 2019, 131: 1-9 CrossRef
  44. Pozdnyakova N., Dubrovskaya E., Chernyshova M., Makarov O., Golubev S., Balandina S., Turkovskaya O. The degradation of three-ringed polycyclic aromatic hydrocarbons by wood-inhabiting fungus Pleurotus ostreatus and soil-inhabiting fungus Agaricus bisporus. Fungal Biology, 2018, 122(5): 363-372 CrossRef
  45. Karthikeyan V., Ragunathan R., Johney J., Kabesh K. Production, optimization and purification of laccase produced by Pleurotus ostreatus MH591763. Research & Reviews: A Journal of Microbiology and Virology, 2019, 9(1): 56-64.
  46. Noman E., Al-Gheethi A., Mohamed R.M.S.R., Talip B.A. Myco-remediation of xenobiotic organic compounds for a sustainable environment: a critical review. Topics in Current Chemistry, 2019, 377(3): 17 CrossRef
  47. Bamigboye C.O., Oloke J.K., Burton M., Dames J.F., Lateef A. Optimization of the process for producing biomass and exopolysaccharide from the king tuber oyster mushroom, Pleurotus tuber-regium (Agaricomycetes), for biotechnological applications. International Journal of Medicinal Mushrooms, 2019, 21(4): 311-322 CrossRef
  48. Zhang W.R., Liu S.R., Kuang Y.B., Zheng S.Z. Development of a novel spawn (block spawn) of an edible mushroom, Pleurotus ostreatus, in liquid culture and its cultivation evaluation. Mycobiology, 2019, 47(1): 97-104 CrossRef
  49. Stajić M., Vukojević J., Knežević A., Milovanović I. Influence of trace elements on ligninolytic enzyme activity of Pleurotus ostreatus and P. pulmonarius. BioResources, 2013, 8(2): 3027-3037 CrossRef
  50. Baldrian P., Valášková V., Merhautová V., Gabriel J. Degradation of lignocellulose by Pleurotus ostreatus in the presence of copper, manganese, lead and zinc. Research in Microbiology, 2005, 156(5-6): 670-676 CrossRef
  51. Yan H., Chang H. Antioxidant and antitumor activities of selenium-and zinc-enriched oyster mushroom in mice. Biological Trace Element Research, 2012, 150(1-3): 236-241 CrossRef
  52. Ma X.K., Zhang H., Fam H. Influence of rutin, FeSO4, Tween 80, aspartate and complex vitamins on synthesis of fungal exopolysaccharide. Carbohydrate Polymers, 2013, 92(2): 1188-1196 CrossRef
  53. Glukhova L.B., Frank Y.A., Danilova E.V., Avakyan M.R., Banks D., Tuovinen O.H., Karnachuk O.V. Isolation, characterization, and metal response of novel, acid-tolerant Penicillium spp. from extremely metal-rich waters at a mining site in Transbaikal (Siberia, Russia). Microbial Ecology, 2018, 76(4): 911-924 CrossRef
  54. Ramesh G., Podila G.K., Gay G., Marmeisse R., Reddy M.S. Different patterns of regulation for the copper and cadmium metallothioneins of the ectomycorrhizal fungus Hebeloma cylindrosporum. Applied and Environmental Microbiology, 2009, 75(8): 2266-2274 CrossRef
  55. Pankratov A.N., Tsivileva O.M., Tsymbal O.A., Yurasov N.A. Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya: Khimiya. Biologiya. Ekologiya, 2015, 15(3): 16-25 CrossRef (in Russ.).
  56. Tsivileva O.M., Pankratov A.N., Misin V.M., Zavyalov A.Yu., Volkov V.A., Tsymbal O.A., Yurasov N.A., Nikitina V.E. Antioxidant properties of the Artist's Conk medicinal mushroom, Ganoderma applanatum (Agaricomycetes), upon cultivation with para-substituted phenolic compounds and tea leaf extracts. International Journal of Medicinal Mushrooms, 2018, 20(6): 549-560 CrossRef
  57. Drevko B.I., Drevko R.I., Antipov V.A., Chernukha B.A., Yakovlev A.N. Sredstvo dlya lecheniya i profilaktiki infektsionnykh zabolevanii i otravlenii zhivotnykh i ptits, povyshayushchee ikh produktivnost' i sokhrannost'. Pat. 2171110 (RF) MPK 7 A 61 K 33/04. Zayavl. 26.05.1999. Opubl. 27.07.2001. Byul. № 21 [A composition for the treatment and prevention of infectious diseases and poisoning of animals and birds, increasing their productivity and safety. Patent 2171110 (RF) MPK 7 A 61 K 33/04. Appl. 26.05.1999. Publ. 27.07.2001. Bull. № 21] (in Russ.).
  58. Sharofova M.U., Sagdieva Sh.S., Abdullaev S.F., Maslov V.A., Rakhimi F., Mirshakhi M. Doklady Akademii nauk Respubliki Tadzhikistan, 2018, 61(4): 350-359 (in Russ.).
  59. Khokhlova E.A., Kachala V.V., Ananikov V.P. Conversion of carbohydrates to 5-hydroxymethylfurfural: the nature of the observed selectivity decrease and microwave radiation effect. Russian Chemical Bulletin, 2013, 62(3): 830-835 CrossRef
  60. Sharma V.K., Choi J., Sharma N., Choi M., Seo S.-Y. Invitro anti-tyrosinase activity of 5-(hydroxymethyl)-2-furfural isolated from Dictyophoraindusiata. PhytotherapyResearch, 2004, 18(10): 841-844 CrossRef
  61. Kim Y.M., Yun J., Lee C.-K., Lee H., Min K.R., Kim Y. Oxyresveratrol and hydroxystilbene compounds inhibitory effect on tyrosinase and mechanism of action. Journal of Biological Chemistry, 2002, 277(18): 16340-16344 CrossRef
  62. Razak D.L.A., Fadzil N.H.M., Jamaluddin A., Rashid N.Y.A., Sani N.A., Manan M.A. Effects of different extracting conditions on anti-tyrosinase and antioxidant activities of Schizophyllum commune fruit bodies. Biocatalysis and Agricultural Biotechnology, 2019, 19: 101116 CrossRef
  63. Çayan F., Tel G., Duru M.E., Öztürk M., Türkoğlu A., Harmandar M. Application of GC, GC-MSD, ICP-MS and spectrophotometric methods for the determination of chemical composition and in vitro bioactivities of Chroogomphus rutilus: the edible mushroom species. Food Analytical Methods, 2014, 7(2): 449-458 CrossRef
  64. Tel G., Deveci E., Küçükaydın S., Özler M.A., Duru M.E., Harmandar M. Evaluation of antioxidant activity of Armillaria tabescens, Leucopaxillus gentianeus and Suillus granulatus: the mushroom species from Anatolia. Eurasian Journal of Analytical Chemistry, 2013, 8(3): 136-147.
  65. Chen J.-T., Su H.-J., Huang J.-W. Isolation and identification of secondary metabolites of Clitocybe nuda responsible for inhibition of zoospore germination of Phytophthora capsici. Journal of Agricultural and Food Chemistry, 2012, 60(30): 7341-7344 CrossRef
  66. Cheung L.M., Cheung P.C.K., Ooi V.E.C. Antioxidant activity and total phenolics of edible mushroom extracts. FoodChemistry, 2003, 81(2): 249-255 CrossRef
  67. Karpukhina G.V., Emanuel N.M. Doklady Akademii Nauk SSSR, 1984, 276(5): 1163-1167 (in Russ.).
  68. Burlakova E.B., Mazaletskaya L.I., Sheludchenko N.I., Shishkina L.N. Inhibitory effect of the mixtures of phenol antioxidants and phosphatidylcholine. Russian Chemical Bulletin, 1995, 44(6): 1014-1020 CrossRef
  69. Mazaletskaya L.I., Sheludchenko N.I., Shishkina L.N. Role of the nitrogen-containing moiety of phosphatidylcholines in the mechanism of inhibiting action of their mixtures with natural and synthetic antioxidants. Petroleum Chemistry, 2008, 48(2): 105-111 CrossRef
  70. Lanfranco L., Novero M., Bonfante P. The mycorrhizal fungus Gigaspora margarita possesses a CuZn superoxide dismutase that is up-regulated during symbiosis with legume hosts. Plant Physiology, 2005, 137(4): 1319-1330 CrossRef
  71. Sharma S.S., Dietz K.J. The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. Journal of Experimental Botany, 2006, 57(4): 711-726 CrossRef
  72. Aguilar F. Manganese ascorbate, manganese aspartate, manganese bisglycinate and manganese pidolate as sources of manganese added for nutritional purposes to food supplements. European Food Safety Authority Journal, 2009, 7(6): 1114.
  73. Mohamed E.T., Said A.I., El-Sayed S.A. Protective effect of zinc aspartate against acetaminophen induced hepato-renal toxicity in albino rats. Journal of Radiation Research and Applied Sciences, 2011, 4(2(B)): 709-723.
  74. Le Prell C.G., Ojano-Dirain C., Rudnick E.W., Nelson M.A., DeRemer S.J., Prieskorn D.M., Miller J.M. Assessment of nutrient supplement to reduce gentamicin-induced ototoxicity. Journal of the Association for Research in Otolaryngology, 2014, 15(3): 375-393 CrossRef
  75. Afanas’ev I.B., Suslova T.B., Cheremisina Z.P., Abramova N.E., Korkina L.G. Study of antioxidant properties of metal aspartates. Analyst, 1995, 120(3): 859-862 CrossRef
  76. Özkan K.U., Boran C., Kilinc M., Garipardic M., Kurutaş E.B. The effect of zinc aspartate pretreatment on ischemia-reperfusion injury and early changes of blood and tissue antioxidant enzyme activities after unilateral testicular torsion-detorsion. Journal of Pediatric Surgery, 2004, 39(1): 91-95 CrossRef
  77. Turkovskaya O.V., Dubrovskaya E.V., Grinev V.S., Balandina S.A., Pozdnyakova N.N. Degradative activity and production of the extracellular peroxidases by micromycetes with different ecological strategy, Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2019, 54(1): 65-75 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)