БИОЛОГИЯ РАСТЕНИЙ
БИОЛОГИЯ ЖИВОТНЫХ
ПЕЧАТНАЯ ВЕРСИЯ
ЭЛЕКТРОННАЯ ВЕРСИЯ
 
КАК ПОДАТЬ РУКОПИСЬ
 
КАРТА САЙТА
НА ГЛАВНУЮ

 

 

 

 

doi: 10.15389/agrobiology.2020.3.421rus

УДК 632.937:579.64

 

МИКРОБИОЛОГИЧЕСКАЯ ЗАЩИТА РАСТЕНИЙ В ТЕХНОЛОГИЯХ ФИТОСАНИТАРНОЙ ОПТИМИЗАЦИИ АГРОЭКОСИСТЕМ: ТЕОРИЯ И ПРАКТИКА (обзор)

В.А. ПАВЛЮШИН, И.И. НОВИКОВА, И.В. БОЙКОВА

Фитосанитарная оптимизация агроэкосистем должна быть основана на использовании комплекса полифункциональных биопрепаратов на основе штаммов микробов — антагонистов возбудителей болезней, продуцентов биологически активных веществ и энтомопатогенных микроорганизмов для контроля вредных членистоногих и возбудителей болезней (В.Д. Надыкта с соавт., 2010; Rohini с соавт., 2016; М. Ghorbanpour с соавт., 2017). Для защиты растений наиболее перспективны штаммы микроорганизмов, которые обладают не только прямым целевым действием на вредные объекты, но и повышают болезнеустойчивость растений, опосредованно защищая их за счет фиторегуляторной активности штаммов-продуцентов (И.И. Новикова, 2016). Целостная концепция микробиологической защиты предполагает разработку и применение биопрепаратов на основе живых культур энтомопатогенных микроорганизмов и микробов-анта-гонистов, обладающих профилактическим и пролонгированным действием, а также препаративных форм на основе метаболитных комплексов для быстрого снижения плотности популяций фитопатогенов (И.И. Новикова с соавт., 2016). Методология создания полифункциональных биопрепаратов для защиты растений основана на использовании технологичных штаммов с высокой биологической активностью, безопасных для человека и теплокровных животных. Показано, что роль энтомопатогенных вирусов, микроспоридий, бактерий и грибов в динамике численности насекомых-фитофагов определяется типом патогенеза (облигатный или факультативный). При внутриклеточном облигатном паразитизме бакуловирусов и микроспоридий отмечены массовые эпизоотии у непарного шелкопряда (Lymantria dispar Linnaeus), листоверток (сем. Tortricidae Latreille), капустной белянки (Pieris brassicae Linnaeus), лугового и кукурузного мотыльков (Loxostege sticticalis Linnaeus и Ostrinia nubilalis Hübner), рыжего соснового (Neodiprion sertifer Geoffroy) и черного хлебного (Cephus pygmeus Linnaeus) пилильщиков, сибирского шелкопряда (Dendrolimus sibiricus Tschetverikov), хлопковой (Helicoverpa armigera Hübner)и серой зерновой совки(Apamea anceps Denis & Schiffermüller) (И.В. Исси, 1986; A. Vey с соавт., 1989; А.Н. Фролов с соавт., 2008; В.А. Павлюшин с соавт., 2013). Регулирующая роль энтомофторозов наиболее ярко проявляется у различных видов тлей и некоторых видов саранчовых (Г.Р. Леднев с соавт., 2013). При факультативном паразитизме, который характерен для энтомопатогенных грибов из родов Beauveria, Metarhizium, Lecanicillium и др. (E. Quessada-Moraga с соавт., 2004), а также бактерий группы Bacillus thuringiensis (Н.В. Кандыбин, 1989) и представителей рода Xenorhabdus, важнейший фактор в реализации вирулентных свойств — токсигенность в отношении насекомых-хозяев (M. Faria с соавт., 2007). Выявлена роль гидролитических ферментов (хитиназ, липаз, протеаз), токсинов, а также факторов антифагоцитарной защиты в реализации признака вирулентности энтомопатогенных грибов. Микробиологическая защита растений от болезней основана на использовании штаммов с высокой конкурентоспособностью, синтезирующих комплексы гидролаз и биологически активных соединений и эффективно колонизирующих подходящие экологические ниши (И.В. Максимов с соавт., 2015; И.И. Новикова, 2016; И.И. Новикова с соавт., 2016). Ряд активных соединений, образуемых ризосферными микроорганизмами, обладают элиситорной активностью и запускают механизмы индуцированной устойчивости (J.W. Kloepper с соавт., 2009; N. Ohkama-Ohtsu с соавт., 2010). Биологическая эффективность биопрепаратов, разработанных во Всероссийском НИИ защиты растений, в отношении развития и распространенности основных вредоносных заболеваний сельскохозяйственных культур достигает 60-90 %, что обеспечивает повышение продуктивности на 20-25 % и улучшение качества растениеводческой продукции (И.И. Новикова, 2017). Основные задачи микробиологической защиты растений включают расширение перспективных для создания новых биопрепаратов видов и штаммов микроорганизмов, разработку оптимальных для использования в разных экологических условиях новых препаративных форм, а также разработку систем биологической и интегрированной защиты растений на основе сочетания биопрепаратов разного целевого назначения с учетом состава фитопатогенных комплексов и фитосанитарной ситуации в целом (Н.А. Белякова с соавт., 2013).

Ключевые слова: биопрепараты, биологическая эффективность, энтомопатогенные микроорганизмы, микробы-антагонисты, вредные членистоногие, фитопатогенные грибы, фитопатогенные бактерии, препаративные формы, биоактивные комплексы, элиситоры.

 

 

MICROBIOLOGICAL CONTROL IN PHYTOSANITARY OPTIMIZATION TECHNOLOGIES FOR AGROECOSYSTEMS: RESEARCH AND PRACTICE (review)

V.A. Pavlyusin, I.I. Novikova, I.V. Boikova

Phytosanitary optimization of agroecosystems targeted to control harmful arthropods and plant pathogens should use a complex of multifunctional biologics based on microbial antagonists of pathogens, producers of bioactive substances and entomopathogens (V.D. Nadykta et al., 2010; Rohini et al.; 2016, M. Ghorbanpour et al., 2017). The most promising microbial strains for plant protection are those possessing not only a direct target effect but also the ability to increase plant disease resistance due to phytoregulatory activity (I.I. Novikova, 2016). The holistic concept of microbiological protection involves the development and use of biological products based on living cultures of entomopathogenic microorganisms and antagonistic microbes with preventive and prolonged action, as well as formulations based on metabolite complexes to quickly reduce the density of phytopathogen populations (I.I. Novikova et al., 2016). Creating multifunctional biological products for plant protection is based on technological strains with high biological activity that are safe for humans and warm-blooded animals. It has been shown that the role of entomopathogenic viruses, microsporidia, bacteria and fungi in the dynamics of the number of phytophagous insects is determined by the type of pathogenesis (obligate or facultative). In case of intracellular obligate parasitism of baculoviruses and microsporidia, mass epizootics were observed in unpaired silkworms (Lymantria dispar Linnaeus), leafworms (family Tortricidae Latreille), cabbage whitewash (Pieris brassicae Linnaeus), meadow and corn moths (Loxostege sticticalis Linnaeus, Ostrinia nubilalis Hübner), ginger pine (Neodiprion sertifer Geoffroy) and black bread (Cephus pygmeus Linnaeus) sawflies, Siberian silkworm (Dendrolimus sibiricus Tschetverikov), cotton (Helicoverpa armigera Hübner) and gray grain scoops (Apamea anceps Denis & Schiffermüller) (I.V. Issy, 1986; A. Vey et al., 1989; A.N. Frolov et al., 2008; V.A. Pavlyushin et al., 2013). The regulatory role of Entomophthora infection is most pronounced in various species of aphids and some species of locusts (G.R. Lednev et al., 2013). For facultative parasitism which is characteristic of entomopathogenic fungi of genera Beauveria, Metarhizium, Lecanicillium, etc. (E. Quessada-Moraga et al., 2004), as well as bacteria of Bacillus thuringiensis group (N.V. Kandybin, 1989) and genus Xenorhabdus members, the most important factor of virulence is toxigenicity against host insects (M. Faria et al., 2007). Hydrolytic enzymes (chitinases, lipases, proteases), toxins, and antiphagocytic defense are factors of virulence of entomopathogenic fungi. Microbiological protection of plants from diseases is based on the use of highly competitive strains that synthesize complexes of hydrolases and biologically active compounds and efficiently colonize suitable ecological niches (I.V. Maksimov et al., 2015; I.I. Novikova, 2016; I.I. Novikova et al., 2016). A number of active compounds produced by rhizosphere microorganisms possess elicitor activity and trigger induced resistance (J.W. Kloepper et al., 2009; N. Ohkama-Ohtsu et al., 2010). The effectiveness of biologicals developed at the All-Russian Research Institute of Plant Protection against the main harmful diseases of crops reaches 60-90%, which provides a 20-25 % increase in productivity and improves the quality of crop production (I.I. Novikova, 2017). The plant microbiological protection concept relies on the search for promising producers of novel biologicals among wider range of microbial species and strains, on the design of new formulations optimal in specific environmental conditions, and on biological plant protection and integrated plant protection management which combines biological products for various purposes depending on the specific complex of plant pathogens and the local phytosanitary situation in general (N.A. Belyakova et al., 2013).

Keywords: biologicals, bio-effectiveness, entomopathogenic microorganisms, antagonist microbes, harmful arthropods, plant pathogenic fungi, plant pathogenic bacteria, usable pesticide preparation, bioactive complexes, elicitors.

 

ФГБНУ Всероссийский НИИ защиты растений
196608 Россия, г. Санкт-Петербург—Пушкин,
ш. Подбельского, 3,
e-mail: info@vizr.spb.ru, vapavlyushin@vizr.spb.ru, irina_novikova@inbox.ru ✉, irina_boikova@mail.ru

Поступила в редакцию
1 октября 2019 года

 

назад в начало

 


СОДЕРЖАНИЕ

 

 

Полный текст PDF

Полный текст HTML