PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2020.3.468eng

UDC: 631.95:51-76

 

RISK ASSESSMENT METHODOLOGY FOR AGROECOSYSTEMS IN THE CONDITIONS OF TECHNOGENIC POLLUTION

A.V. Panov, T.V. Perevolotskaya

Russian Institute of Radiology and Agroecology, 109 km., Kievskoe shosse, Kaluga Province, Obninsk, 249032 Russia, e-mail: riar@mail.ru (✉ corresponding author), forest_rad@mail.ru

ORCID:
Panov A.V. orcid.org/0000-0002-9845-7572
Perevolotskaya T.V. orcid.org/0000-0001-8250-5536

Received July 27, 2019

 

Currently, the world scientific community is faced with the task of identifying and minimizing environmental risks of the impact of anthropogenic factors on ecosystems, especially agricultural ones (A.A. Muzalevsky et al., 2011). The keystone of environmental risk assessment is estimated probability of the adverse effects of various nature (radiation, chemical and biological agents) and prevention of their negative impact. The most common sources of pollution of agroecosystems are precipitation from industrial and transport emissions, industrial wastewater, sewage sludge, organic and mineral fertilizers and plant protection products, dumps of ash, slag, ores and slime (S.C. Barman et al., 2000; Yu.N. Vodyanitsky et al., 2011; E.C. Rowe et al., 2015). Such risks are usually assessed situationally, в The purpose of the presented theoretical research was to develop a unified methodology for assessing agroecological risks caused by anthropogenic pollutants. The developed methodology uses mathematical modeling methods and is based on the principles and criteria ensuring the safety of agricultural ecosystems in conditions of man-made pollution. Atmospheric pollutants are the main source of man-made impact. Temporal patterns of their impact vary from acute (e.g. upon accidents) to chronic that should be taken into account. Agroecosystem productivity, as an integral indicator, is a basic criterion for assessing agroecological risks. The methodology includes a four-step algorithm: i) hazard identification based on available agroecosystem data with identification of the sources and nature of the hazard and key affected components; ii) impact assessment by measuring or calculating its intensity, duration, and mode of exposure; iii) a dose-effect assessment by a relationship between the degree of the impact and the probability of its negative consequences; iv) risk characterization, including reliability analysis of the obtained data, estimates of risk from individual factors and their combinations, and calculation of a probability of adverse effect for each agroecosystem component. The choice of a method for assessing agroecological risks (deterministic, probabilistic of the 1st and 2nd type, and integral probabilistic) is substantiated based on the indicator pools, risk criteria and the degree of technogenic impact. Risk characterization includes its classification in terms of an environmentally acceptable level as per maximum allowed concentrations and semi-lethal doses (LD50). For each step, risk uncertainties are accounted. Agroecological risk assessment algorithm includes i) database analysis and selection of agent-specific and exposure-specific values of the effects; ii) estimates of meteorological parameters of pollutant diffusion under specific release conditions; iii) calculated or experimental estimates of pollutant deposition on the ground depending on peculiarities of the impact; iv) calculation or experimental assessment of radionuclide or chemical toxicant contaminations; v) calculation or measurement of the effects of radionuclides or chemical pollutants on the agroecosystem components. The proposed approaches to assessing agroecological risk are applicable to a wide class of environmental problems.

Keywords: agroecosystem, agricultural products, heavy metals, radionuclides, technogenic factor, agroecosystem components, impact level, dose-response relationships, mathematical models.

 

REFERENCES

  1. Katkova M.N., Ivanitskaya M.V. Radiatsiya i risk, 2008, 17(4): 67-78 (in Russ.).
  2. Franco-Uría A., López-Mateo C., Roca E., Fernández-Marcos M.L. Source identification of heavy metals in pastureland by multivariate analysis in NW Spain. Journal of Hazardous Materials, 2009, 165(1-3): 1008-1015 CrossRef
  3. Rajaganapathy V., Xavier F., Sreekumar D., Mandal P.K. Heavy metal contamination in soil, water and fodder and their presence in livestock and products: a review. Journal of Environmental Science and Technology, 2011, 4(3): 234-249 CrossRef
  4. Il'yazov R.G., Aleksakhin R.M., Fisinin V.I., Smirnov A.M., Gusmanov U.G. Methodology of investigations and experiments in agroecosphere at different technogenesis types. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2010, 2: 3-17 (in Russ.).
  5. Manzoor S., Shah M.H., Shaheen N., Khalique A., Jaffar M. Multivariate analysis of trace metals in textile effluents in relation to soil and groundwaters. Journal of Hazardous Materials, 2006, 137(1): 31-37 CrossRef
  6. Muzalevskiii A.A., Karlin L.N. Ekologicheskie riski: teoriya i praktika [Environmental risks: theory and practice]. St. Petersburg, 2011 (in Russ.).
  7. Bashkin V.N. Ekologicheskie riski: raschet, upravlenie, strakhovanie [Environmental risks: calculation, management, insurance]. Moscow, 2007 (in Russ.).
  8. Dalezios N.R., Blanta A., Spyropoulos N.V., Tarquis A.M. Risk identification of agricultural drought for sustainable agroecosystems. Natural Hazards and Earth System Science, 2014, 14(9): 2435-2448 CrossRef
  9. Perevolotskaya T.V., Panov A.V. Metodologiya otsenki agroekologicheskikh riskov, obuslovlennykh posledstviyami radiatsionnykh avarii. Radiatsiyairisk, 2018, 27(4): 119-132 CrossRef
  10. Spiridonov S.I., Sanzharova N.I., Teten'kin V.L., Geras'kin S.A., Panov A.V., Solomatin V.M., Epifanova I.E., Karpenko E.I. Metodologiya otsenki riska vozdeistviya tekhnogennykh faktorov razlichnoi prirody na agroekosistemy. Obninsk, 2007.
  11. Li Z., Ma Z., van der Kuijp T.J., Yuan Z., Huang L. A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Science of the Total Environment, 2014, 468-469: 843-853 CrossRef
  12. Fraga C.G. Relevance, essentiality and toxicity of trace elements in human health. Molecular Aspects of Medicine, 2005, 26(4-5): 235-244 CrossRef
  13. Vries W., Römkens P.F.A.M., Schütze G. Critical soil concentrations of cadmium, lead, and mercury in view of health effects on humans and animals. In: Reviews of environmental contamination and toxicology, vol. 191. Springer, New York, NY, 2007: 91-130 CrossRef
  14. Kim J., Lee Y., Yang M. Environmental exposure to lead (Pb) and variations in its susceptibility. Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews, 2014, 32(2): 159-185 CrossRef
  15. Bortey-Sam N., Nakayama S.M.M., Ikenaka Y., Akoto O., Baidoo E., Yohannes Y.B., Mizukawa H., Ishizuka M. Human health risks from metals and metalloid via consumption of food animals near gold mines in Tarkwa, Ghana: estimation of the daily intakes and target hazard quotients (THQs). Ecotoxicology and Environmental Safety, 2015, 111: 160-167 CrossRef
  16. Miranda M., López-Alonso M., Castillo C., Hernández J., Benedito J.L. Effects of moderate pollution on toxic and trace metal levels in calves from a polluted area of northern Spain. Environment International, 2005, 31(4): 543-458 CrossRef
  17. Cai Q., Long M.L., Zhu M., Zhou Q.Z., Zhang L., Liu J. Food chain transfer of cadmium and lead to cattle in a lead-zinc smelter in Guizhou, China. Environmental Pollution, 2009, 157(11): 3078-3082 CrossRef
  18. Miranda M., Benedito J.L., Blanco-Penedo I., López-Lamas C., Merino A., López-Alonso M. Metal accumulation in cattle raised in a serpentine-soil area: relationship between metal concentrations in soil, forage and animal tissues. Journal of Trace Elements in Medicine and Biology, 2009, 23(3): 231-238 CrossRef
  19. Hänsch R., Mendel R.R. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Current Opinion in Plant Biology, 2009, 12(3): 259-266 CrossRef
  20. Skalny A.V., Salnikova E.V., Burtseva T.I., Skalnaya M.G., Tinkov A.A. Zinc, copper, cadmium, and lead levels in cattle tissues in relation to different metal levels in ground water and soil. Environmental Science and Pollution Research, 2019, 26: 559-569 CrossRef
  21. Sánchez-Pardo B., Fernández-Pascual M., Zornoza P. Copper microlocalisation, ultrastructural alterations and antioxidant responses in the nodules of white lupin and soybean plants grown under conditions of copper excess. Environmental and Experimental Botany, 2012, 84: 52-60 CrossRef
  22. Tsygvintsev P.N., Goncharova L.I., Manin K.V., Rachkova V.M. Estimation of the optimal Cu content in different soil types based of the dynamic model for copper accumulation in above ground parts and roots (on the example of barley Hordeum vulgare L. plants). Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2018, 53(3): 570-577 CrossRef
  23. Küpper H., Götz B., Mijovilovich A., Küpper F.C., Meyer-Klaucke W. Complexation and toxicity of copper in higher plants. I. Characterization of copper accumulation, speciation, and toxicity in Crassula helmsii as a new copper accumulator. Plant Physiology, 2009, 151(2): 702-714 CrossRef
  24. Wang X., Ma Y., Hua L., McLaughlin M.J. Identification of hydroxyl copper toxicity to barley (Hordeum vulgare) root elongation in solution culture. Environmental Toxicology and Chemistry, 2009, 28(3): 662-667 CrossRef
  25. Barman S.C., Sahu R.K., Bhargava S. K., Chaterjee C. Distribution of heavy metals in wheat, mustard, and weed grown in field irrigated with industrial effluents. Bulletin of the Environmental Contamination and Toxicology, 2000, 64: 489-496 CrossRef
  26. Vodyanitskii Yu.N., Plekhanova I.O., Prokopovich E.V., Savichev A.T. Soil contamination with emissions of non-ferrous metallurgical plants. Eurasion Soil Science, 2011, 44: 217-226 CrossRef
  27. Vodyanitskii Yu.N. Contamination of soils with heavy metals and metalloids and its ecological hazards (analytic review). Eurasion Soil Science, 2013, 46: 793-801 CrossRef
  28. Antle J.M., Basso B., Conant R.T., Godfray H.C.J., Jones J.W., Herrero M., Howitt R.E., Keating B.A., Munoz-Carpena R., Rosenzweig C., Tittonell P., Wheeler T.R. Towards a new generation of agricultural system data, models and knowledge products: design and improvement. Agricultural Systems, 2017, 155: 255-268 CrossRef
  29. Anisimov V.S., Anisimova L.N., Frigidova L.M., Sanzharova N.I., Frigidov R.A., Dikarev D.V., Korneev Yu.N. Vestnik Rossiiskoi sel'skokhozyaistvennoi nauki, 2016, 4: 14-17 (in Russ.).
  30. Ul'yanenko L.N., Filipas A.S., Loi N.N., Stepanchikova N.S., Kruglov S.V. Vliyanie zagryazneniya kadmiem dernovo-podzolistoi pochvy na rost i razvitie rastenii yachmenya. Agrokhimiya, 2009, 6: 56-60.
  31. Lequeux H., Hermans C., Lutts S., Verbruggen N. Response to copper excess in Arabidopsis thaliana: impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. Plant Physiology and Biochemistry, 2010, 48(8): 673-682 CrossRef
  32. Talukdar D. Studies on antioxidant enzymes in Canna Indica plant under copper stress. Journal of Environmental Biology, 2013, 34(1): 93-98.
  33. Fidalgo F., Azenha M., Silva A.F., de Sousa A., Santiago A., Ferraz P., Teixeira J. Copper-induced stress in Solanum nigrum L. and antioxidant defense system responses. Food and Energy Security, 2013, 2(1): 70-80 CrossRef
  34. Demková L., Árvay J., Bobuľská L., Tomáš J., Stanovič R., Lošák T., Harangozo L., Vollmannová A., Bystrická J., Musilová J. Jobbágy J. Accumulation and environmental risk assessment of heavy metals in soil and plants of four different ecosystems in a former polymetallic ore mining and smelting area (Slovakia). Journal of Environmental Science and Health Part A Toxic/Hazardous Substances & Environmental Engineering, 2017, 52(5): 479-490 CrossRef
  35. Kisku G.C., Barman S.C., Bhargava S.K. Contamination of soil and plants with potentially toxic elements irrigated with mixed industrial effluent and its impact on the environment. Water, Air, and Soil Pollution, 2000, 120(1-2): 121-137 CrossRef
  36. Rowe E.C., Wamelink G.W.W., Smart S.M., Butler A., Henrys P.A., van Dobben H.F., Reinds G.J., Evans C.D., Kros J., de Vries W. Field survey-based models for exploring nitrogen and acidity effects on plant species diversity and assessing long-term critical loads. In: Critical loads and dynamic risk assessments. Environmental pollution, vol. 25. Springer, Dordrecht, 2015: 297-326 CrossRef
  37. U.S. EPA. Concepts, methods, and data sources for cumulative health risk assessment of multiple chemicals, exposures and effects: A resource document (Final report, 2008). U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-06/013F, 2007.
  38. Munns J.W.R., Kroes R., Veith G.D., Suter II G.W., Damstra T., Waters M.D. Approaches for integrated risk assessment. Human and ecological risk assessment: An International Journal, 2003, 9(1): 267-272 CrossRef
  39. Munns W.R. Jr., Poulsen V., Gala W.R., Marshall S.J., Rea A.W., Sorensen M.T., von Stackelberg K. Ecosystem services in risk assessment and management. Integrated Environmental Assessment and Management, 2017, 13(1): 62-73 CrossRef
  40. Franklin J., Regan H.M., Syphard A.D. Linking spatially explicit species distribution and population models to plan for the persistence of plant species under global change for the persistence of plant species under global change. Environmental Conservation, 2014, 41(2): 97-109 CrossRef
  41. Stern B.R. Essentiality and toxicity in copper health risk assessment: overview, update and regulatory considerations. Journal of Toxicology and Environmental Health, Part A, 2010, 73(2-3): 114-127 CrossRef
  42. White P.J., Brown P.H. Plant nutrition for sustainable development and global health. Annals of Botany, 2010, 105(7): 1073-1080 CrossRef
  43. Tsygvintsev P.N., Goncharova L.I., Rachkova V.M. Uspekhi sovremennogo estestvoznaniya, 2018, 11(2): 305-310 (in Russ.).
  44. Budantsev P.B., Uvarov L.A., Tsyplakov S.E. Agrokhimiya, 2011, 4: 74-81 (in Russ.).
  45. Gladkov E.A. Estimation of complex phytotoxicity of hеаvy metals and determination of admissible concentration for zinc and copper. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2010, 45(6): 94-99 (in Engl.">CrossRef
  46. Shao C., Yang J., Tian X., Ju M., Huang L. Integrated environmental risk assessment and whole-process management system in chemical industry parks. International Journal of Environmental Research and Public Health, 2013, 10(4): 1609-1630 CrossRef
  47. Chen J., Shafi M., Li S., Wang Y., Wu J., Peng Z.Y.D., Yan W., Liu D. Copper induced oxidative stresses, antioxidant responses and phytoremediation potential of Moso bamboo (Phyllostachys pubescens). Scientific Reports, 2015, 5: 13554 CrossRef
  48. Bizzo A.L.T., Intorne A.C., Gomes P.H., Suzuki M.S., dos Santos Esteves B. Short-term physiological responses to copper stress in Salvinia auriculata Aubl. Acta Limnologica Brasiliensia, 2014, 26(3): 268-277 CrossRef
  49. Goncharova L.I., Manin K.V., Rachkova V.M. Agrokhimiya, 2011, 6: 61-67 (in Russ.).
  50. Frigidov R.A., Anisimov V.S., Frigidova L.M., Geras'kin S.A., Anisimova L.N., Korneev Yu.N., Sanzharova N.I. Agrokhimiya, 2014, 12: 42-54 (in Russ.).
  51. Tsygvintsev P.N., Goncharova L.I., Sanzharova N.I., Rachkova V.M. Agrokhimiya, 2016, 12: 76-81 (in Russ.).
  52. Devos Y., Romeis J., Luttik R., Maggiore A., Perry J.N., Schoonjans R., Streissl F., Tarazona J.V., Brock T.C.M. Optimising environmental risk assessments. Accounting for biodiversity and ecosystem services helps to translate broad policy protection goals into specific operational ones for environmental risk assessments. EMBO Reports, 2015, 16(9): 1060-1063 CrossRef
  53. Leung K.M.Y., Dudgeon D. Ecological risk assessment and management of exotic organisms associated with aquaculture activities. In: Understanding and applying risk analysis in aquaculture. FAO Fisheries and Aquaculture Technical Paper 519. M.G. Bondad-Reantaso, J.R. Arthur, R.P. Subasinghe (eds.). FAO, Rome, 2008: 67-100.
  54. Gworek B., Baczewska-Dąbrowska A.H., Kalinowski R., Górska E.B., Rekosz-Burlaga H., Gozdowski D., Olejniczak I., Graniewska M., Dmuchowski W. Ecological risk assessment for land contaminated by petrochemical industry. PLoS ONE, 2018, 13(10): e0204852 CrossRef
  55. Kapustka L. Limitations of the current practices used to perform ecological risk assessment. Integrated Environmental Assessment and Management, 2008, 4(3): 290-298 CrossRef
  56. Cabell J.F., Oelofse M. An indicator framework for assessing agroecosystem resilience. Ecology and Society, 2012, 17(1): 18 CrossRef
  57. Annenkov B.N., Egorov A.V., Il'yazov R.G. Radiatsionnye avarii i likvidatsiya ikh posledstvii v agrosfere /Pod redaktsiei B.N. Annenkova [Radiation accidents and the elimination of their consequences in the agrosphere. B.N. Annenkov (ed.)]. Kazan', 2004 (in Russ.).
  58. Kostyuk V.I., Vikhman M.I., Kashulin P.A., Shmakova N.Yu., Zhirov V.K., Kizeev A.N. Agrokhimiya, 2005, 12: 51-58 (in Russ.).
  59. Loi N.N., Sanzharova N.I., Shchagina N.I., Mironova M.P. The Effect of cadmium toxicity on the development of lettuce plants on contaminated sod-podzolic soil. Russian Agricultural Science, 2018, 44: 49-52 CrossRef
  60. Loi N.N., Sanzharova N.I., Mironova M.P. Agrokhimiya, 2015, 1: 89-96 (in Russ.).
  61. Prakash M.G.N., Chung I.M. Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignification, and molecular level changes. Environmental Science and Pollution Research, 2014, 21: 12709-12722 CrossRef
  62. Frigidov R.A., Frigidova L.M., Anisimov V.S., Sanzharova N.I., Anisimova L.N., Dikarev D.V. Agrokhimiya, 2017, 3: 69-78 (in Russ.).
  63. MU 2.6.5.010-2016. 2.6.5. Atomnaya energetika i promyshlennost'. Obosnovanie granits i usloviya ekspluatatsii sanitarno-zashchitnykh zon i zon nablyudeniya radiatsionnykh ob"ektov. Metodicheskie ukazaniya (utv. FMBA Rossii 22.04.2016) [MU 2.6.5.010-2016. 2.6.5. Nuclear power and industry. Justification of the limits and operating conditions of sanitary protection zones and observation zones of radiation facilities. Guidelines (approved by the FMBA of Russia 04/22/2016)]. Moscow, 2016 (in Russ.).
  64. Pasquill F. Atmospheric Diffusion. 2nd ed. John Wiley & Sons. NY, 1974.
  65. Metodicheskie ukazaniya po raschetu radiatsionnoi obstanovki v okruzhayushchei srede i ozhidaemogo oblucheniya naseleniya pri kratkovremennykh vybrosakh radioaktivnykh veshchestv v atmosferu MPA-98 (utv. prikazom Ministra RF po atomnoi energii 30.12.1998) [Guidelines for calculating the radiation level in the environment and the expected exposure of the population during short-term releases of radioactive substances into the atmosphere MPA-98 (approved by order of the Minister of the Russian Federation for Atomic Energy 12/30/1998)] (in Russ.).
  66. OND-86. Metodika rascheta kontsentratsii v atmosfernom vozdukhe vrednykh veshchestv, soderzhashchikhsya v vybrosakh predpriyatii (utv. 04.08.1986.) [OND-86. Methodology for calculating air concentrations of harmful substances contained in emissions of enterprises (approved 04.08.1986.)]. Leningrad, 1987 (in Russ.).
  67. DV-98: Rukovodstvo po ustanovleniyu dopustimykh vybrosov radioaktivnykh veshchestv v atmosferu [DV-98: Guidelines for establishing permissible emissions of radioactive substances into the atmosphere]. Moscow, 1999 (in Russ.).
  68. Spiridonov S.I., Fesenko S.V., Geras'kin S.A., Solomatin V.M., Karpenko E.I. Radiatsionnaya biologiya. Radioekologiya, 2008, 48(4): 432-438 (in Russ.).
  69. Spirin E.V. Radiatsionnaya biologiya. Radioekologiya, 2009, 49(3): 338-345 (in Russ.).
  70. ICRP, 2008. Environmental protection — the concept and use of reference animals and plants. ICRP Publication 108. Ann. ICRP 38 (4-6">CrossRef
  71. WHO/IPCS. Environmental health criteria 210: principles for the assessment of risks to human health from exposure to chemicals. World Health Organization, International Program on Chemical Safety, Geneva, 1999.
  72. Onishchenko G.G., Novikov S.M., Rakhmanin Yu.A., Avaliani S.L., Bushtueva K.A. Osnovyotsenkiriskadlyazdorov'yanaseleniyaprivozdeistviikhimicheskikhveshchestv, zagryaznyayushchikhokruzhayushchuyusredu[Basics for assessment of the public health risk from chemicals polluting the environment]. Moscow, 2002 (in Russ.).
  73. WHO/IPCS. Environmental health criteria 214: human exposure assessment. Geneva, 2000.

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)