PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2020.3.510eng

UDC: 633:631.522/.524:575:57.06

Acknowledgements:
The work was performed as part of state assignment No. 0574-2019-0003.

 

A MULTIPLEX MICROSATELLITE PCR METHOD FOR DETECTION OF Brassica L. A, B AND C GENOME FRAGMENT INTROGRESSIONS UPON INTERSPECIFIC HYBRIDIZATION

Yu.V. Aniskina1, D.A. Rodionova1, 2, O.N. Zubko2, S.G. Monachos2,
N.S. Velishaeva1, O.S. Kolobova1, I.A. Shilov1

1All-Russian Research Institute of Agricultural Biotechnology, 42, ul. Timiryazevskaya, Moscow, 127550 Russia, e-mail aniskina.julia@gmail.com (✉ corresponding author), daria_951705@mail.ru, nazife@mail.ru, kolobus16@yandex.ru, ishilov@rambler.ru;
2Timiryazev Russian State Agrarian University—Moscow Agrarian Academy, 49, ul. Timiryazevskaya, Moscow, 127550 Russia, e-mail: zubkoolga21@mail.ru, s.monakhos@rgau-msha.ru

ORCID:
Aniskina Yu.V. orcid.org/0000-0002-3376-0263
Rodionova D.A. orcid.org/0000-0001-7628-1791
Zubko O.N. orcid.org/0000-0001-9701-6647
Monachos S.G. orcid.org/0000-0001-9404-8862
Velishaeva N.S. orcid.org/0000-0002-2755-3313
Kolobova O.S. orcid.org/0000-0003-3172-8099
Shilov I.A. orcid.org/0000-0003-2448-6239

Received December 24, 2019

 

The genus Brassica L. is a source of oilseeds, vegetables, spices, fodder and ornamental crops widely cultivated around the world. The six most cultivated species of the genus Brassica comprise allotetraploid species B. juncea (L.)Czern. (2n = 36, genome AABB), B. napus L. (2n = 38, genome AACC) and B. carinata A. Braun (2n = 34, genome BBCC), which are natural hybrids of corresponding diploid species B. rapa L. (2n = 20, genome AA), B. nigra L. (2n = 16, genome BB), and B. oleracea L. (2n = 18, genome CC). An effective way to increase the genetic diversity and improve the agronomic traits of Brassica crops, such as high yields, resistance to diseases, and abiotic stresses is to introduce traits of interest by the interspecific hybridization. To control the introgression of genomic material upon the hybridization, the development and implementation of genetic markers are necessary. This paper proposes an effective approach for controlling the introgression of A, B, and C genomes of Brassica in intraspecific hybrids. The investigation aimed to develop a high-throughput technology based on multiplex PCR analysis of genome-specific microsatellite markers for controlling the introgression of A-, B-, and C-genomes in Brassica intraspecific hybrids. Control samples were obtained from the Center for Genetic Resources CGN (Netherlands) and the All-Russian Institute of Plant Genetic Resources N.I. Vavilov (VIR, St. Petersburg). Plant material for the genomic material introgression study were obtained from the Timofeev Breeding Station (Moscow). Genomic DNA was extracted by sorbent method. PCR was run with specific primers for the Na10-D09, Na12-A02, Na12-F12, Ni2-B02, Ni2-F02, Ni3-G04B, Ol12-A04, Ra2-E12, BRMS-043, BN6A2 loci. Fluorescently labelled PCR products were analyzed by high-resolution electrophoresis using a Nanofor-05 genetic analyzer (Syntol — The Institute for Analytical Instrumentation, Russia). The length of the amplified DNA fragments was determined using the DNA Fragment Analysis software (The Institute for Analytical Instrumentation, Russia). A multiplex PCR technique was developed based on the six microsatellite loci Na12-A02, BRMS-043, Na10-D09, Ol12-A04, Ni2-F02, BN6A2, allowing us to determine the markers of three Brassica genomes in one run. A, B, and C genome-specific markers were identified during multiplex PCR analysis of control samples of six Brassica species with known taxonomic attributions and genome compositions: B. rapa (AA), B. nigra (BB), B. oleracea (CC), B.  napus (AACC), B. juncea (AABB), and B. carinata (BBCC). The length of marker fragments was determined by high resolution electrophoresis using a genetic analyzer with an accuracy of one nucleotide. A-genome specific markers were identified at the loci Na12-A02 (178 bp, 180 bp, 182 bp), BRMS-043 (303 bp, 307 bp, 313 bp), and Na10-D09 (283 bp, 285 bp, 291 bp, 293 bp, 299 bp). B-genome specific markers were detected at the loci Na12-A02 (196 bp, 198 bp, 200 bp, 202 bp, 204 bp, 212 bp, 214 bp, 216 bp), Ol12-A04 (125 bp, 127 bp, 129 bp), Ni2-F02 (198 bp, 200 bp ., 202 bp, 204 bp, 208 bp), and BN6A2 (222 bp). C-genome specific markers were detected at the loci Na12-A02 (164 bp, 168 bp, 170 bp) and Ni2-F02 (164 bp, 166 bp, 168 bp, 186 bp). The developed multiplex PCR system reveals introgressions of fragments of genomes A, B and C in the genetic profiles of interspecific hybrids (Et2 × KK)2 × Tsv9, (Et2 × KK)1, Green × FBLM(1), JR × Agr2ki, BK × ZM1-1(6), BK × ZM1-1(8), BK, and KB. The method also confirmed the presence of the corresponding genomes in the studied samples with a known breeding history. Due to the automation, analysis allows the large-scale screening of plant samples. The proposed technology can be used in breeding practice as a tool for controlling the introgression of A, B and C genome material upon the interspecific hybridization, as well as controlling its inheritance in subsequent generations.

Keywords: Brassica, U triangle, Brassica genomes, interspecific hybridization, introgression, microsatellites, genome-specific markers.

 

REFERENCES

  1. Warwick S.I., Francis A., Al-Shehbaz I.A. Brassicaceae: Species checklist and database on CD-ROM. Plant Systematics and Evolution, 2006, 259(2-4): 249-258 CrossRef
  2. Morinaga T. Interspecific hybridization in Brassica. IV. The cytology of F1 hybrid of B. juncea and B. nigra. Cytologia, 1934, 6: 62-67 CrossRef
  3. U N. Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Japanese Journal of Botany, 1935, 7: 389-452.
  4. Lagercrantz U. Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics, 1998, 150(3): 1217-1228.
  5. Kowalski S.P., Lan T.H., Feldmann K.A., Paterson A.H. Comparative mapping of Arabidopsis thaliana and Brassica oleracea chromosomes reveals islands of conserved organization. Genetics, 1994, 138(2): 499-510.
  6. Rana D., van den Boogaart T., O'Neill C.M., Hynes L., Bent E., Macpherson L., Park J.Y., Lim Y.P., Bancroft I. Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives. Plant Journal, 2004, 40(5): 725-733 CrossRef
  7. Lagercrantz U., Lydiate D. Comparative genome mapping in Brassica. Genetics, 1996, 144(4): 1903-1910.
  8. Zou J., Hu D., Liu P., Raman H., Liu Z., Liu X., Parkin I.A.P., Chalhoub B., Meng J. Co-linearity and divergence of the A subgenome of Brassica juncea compared with other Brassica species carrying different A subgenomes. BMC Genomics, 2016, 17: 18 CrossRef
  9. Jiang C., Ramchiary N., Ma Y., Jin M., Feng J., Li R., Wang H., Long Y., Choi S.R., Zhang C., Cowling W.A., Park B.S., Lim Y.P., Meng J. Structural and functional comparative mapping between the Brassica A genomes in allotetraploid Brassica napus and diploid Brassica rapa. Theoretical and Applied Genetics, 2011, 123(4): 927-941 CrossRef
  10. Mason A.S., Batley J. Creating new interspecific hybrid and polyploid crops. Trends in Biotechnology, 2015, 33(8): 436-441 CrossRef
  11. Snowdon R.J. Cytogenetics and genome analysis in Brassica crops. Chromosome Research, 2007, 15(1): 85-95 CrossRef
  12. Katche E., Quezada-Martinez D., Katche E.I., Vasquez-Teuber P., Mason A.S. Interspecific hybridization for Brassica crop improvement. Crop Breeding, Genetics and Genomics, 2019, 1: e190007 CrossRef
  13. Siemens J. Interspecific hybridisation between wild relatives and Brassica napus to introduce new resistance traits into the oilseed rape gene pool. Czech Journal of Genetics and Plant Breeding, 2002, 38(3-4): 155-157 CrossRef
  14. Chrungu B., Verma N., Mohanty A., Pradhan A., Shivanna K.R. Production and characterization of interspecific hybrids between Brassica maurorum and crop Brassicas. Theoretical and Applied Genetics, 1999, 98(3-4): 608-613 CrossRef
  15. Lelivelt C.L.C., Krens F.A. Transfer of resistance to the beet cyst nematode (Heterodera schachtii Schm.) into the Brassica napus L. gene pool through intergeneric somatic hybridization with Raphanus sativus L. Theoretical and Applied Genetics, 1992, 83(6-7): 887-894 CrossRef
  16. Lelivelt C.L.C., Leunissen E.H.M., Frederiks H.J., Helsper J.P.F.G., Krens F.A. Transfer of resistance to the beet cyst nematode (Heterodera schachtii Schm.) from Sinapis alba L. (white mustard) to the Brassica napus L. gene pool by means of sexual and somatic hybridization. Theoretical and Applied Genetics, 1993, 85(6-7): 688-696 CrossRef
  17. Snowdon R.J., Winter H., Diestel A., Sacristán M.D. Development and characterisation of Brassica napus - Sinapis arvensis addition lines exhibiting resistance to Leptosphaeria maculans. Theoretical and Applied Genetics, 2000, 101(7): 1008-1014 CrossRef
  18. Yamagishi H., Bhat S.R. Cytoplasmic male sterility in Brassicaceae crops. Breeding Science, 2014, 64(1): 38-47 CrossRef
  19. Piao Z., Ramchiary N., Lim Y.P. Genetics of clubroot resistance in Brassica species. Journal of Plant Growth Regulation, 2009, 28(3): 252-264 CrossRef
  20. Sharma B.B., Kalia P., Singh D., Sharma T.R. Introgression of black rot resistance from Brassica carinata to cauliflower (Brassica oleracea botrytis group) through embryo rescue. Frontiers in Plant Science, 2017, 8: 1255 CrossRef
  21. Belimov A.A., Safronova V.I., Demchinskaya S.V., Dzyuba O.O. Intraspecific variability of cadmium tolerance in hydroponically grown Indian mustard (Brassica juncea (L.) Czern.) seedlings. Acta Physiologiae Plantarum, 2007, 29(5): 473-478 CrossRef
  22. Plieske J., Struss D., Röbbelen G. Inheritance of resistance derived from the B-genome of Brassica against Phoma lingam in rapeseed and the development of molecular markers. Theoretical and Applied Genetics, 1998, 97: 929-936 CrossRef
  23. Navabi Z.K., Parkin I.A.P., Pires J.C., Xiong Z., Thiagarajah M.R., Good A.G., Rahman M.H. Introgression of B-genome chromosomes in a doubled haploid population of Brassica napus × B. carinata. Genome, 2010, 53(8): 619-629 CrossRef
  24. Abel S., Möllers C., Becker H. Development of synthetic Brassica napus lines for the analysis of “fixed heterosis” in allopolyploid plants. Euphytica, 2005, 46(1-2): 157-163 CrossRef
  25. Srivastava A., Mukhopadhyay A., Arumugam N., Gupta V., Verma J.K., Pental D., Pradhan A.K. Resynthesis of Brassica juncea through interspecific crosses between B. rapa and B. nigra. Plant Breeding, 2004, 123(2): 204-206 CrossRef
  26. Narasimhulu S.B., Kirti P.B., Prakash S., Chopra V.L. Resynthesis of Brassica carinata by protoplast fusion and recovery of a novel cytoplasmic hybrid. Plant Cell Reports, 1992, 11(8): 428-432 CrossRef
  27. Chen S., Nelson M.N., Chèvre A.M., Jenczewski E., Li Z., Mason A.S. Trigenomic bridges for Brassica improvement. Critical Reviews in Plant Sciences, 2011, 30(6): 524-547 CrossRef
  28. Monakhos G.F., Ignatov A.N., Dzhalilov F.S. Izvestiya TSKHA, 2001, 4: 56-68 (in Russ.).
  29. Malek M.A., Rahman L., Das M.L., Hassan L., Rafii M.Y., Ismail M.R. Development of hexaploid Brassica (AABBCC) from hybrids (ABC) of Brassica carinata (BBCC) × B. rapa (AA). Ausralian Journal of Crop Science, 2013, 7(9): 1375-1382.
  30. Zhou J., Tan C., Cui C., Ge X., Li Z. Distinct subgenome stabilities in synthesized Brassica allohexaploids. Theoretical and Applied Genetics, 2016, 129(7): 1257-1271 CrossRef
  31. Gupta M., Atri C., Agarwal N., Banga S.S. Development and molecular-genetic characterization of a stable Brassica allohexaploid. Theoretical and Applied Genetics, 2016, 129(11): 2085-2100 CrossRef
  32. Li Q., Mei J., Zhang Y., Li J., Ge X., Li Z., Qian W. A large-scale introgression of genomic components of Brassica rapa into B. napus by the bridge of hexaploid derived from hybridization between B. napus and B. oleracea. Theoretical and Applied Genetics, 2013, 126(8): 2073-2080 CrossRef
  33. Ma N., Li Z.-Y., Cartagena J. A., Fukui K. GISH and AFLP analyses of novel Brassica Napus lines derived from one hybrid between B. napus and Orychophragmus Violaceus. Plant Cell Reports, 2006, 25(10): 1089-1093 CrossRef
  34. Monakhos S.G. Integratsiya sovremennykh biotekhnologicheskikh metodov v selektsii ovoshchnykh kul'tur. Doktorskaya dissertatsiya. [Integration of modern biotechnological methods in the vegetable crop breeding technologies. DSc Thesis]. Moscow, 2015 (in Russ.).
  35. Koh J.C.O., Barbulescu D.M., Norton S., Redden B., Salisbury P.A., Kaur S., Cogan N., Slater A.T. A multiplex PCR for rapid identification of Brassica species in the triangle of U. Plant Methods, 2017, 13(1): 49 CrossRef
  36. Thakur A.K., Singh K.H., Singh L., Nanjundan J., Khan Y.J., Singh D. SSR marker variations in Brassica species provide insight into the origin and evolution of Brassica amphidiploids. Hereditas, 2017, 155: 6 CrossRef
  37. Mason A.S., Nelson M.N., Castello M.C., Yan G., Cowling W.A. Genotypic effects on the frequency of homoeologous and homologous recombination in Brassica napus × B. carinata hybrids. Theoretical and Applied Genetics, 2011, 122(3): 543-553 CrossRef
  38. Clarke W.E., Higgins E.E., Plieske J., Wieseke R., Sidebottom C., Khedikar Y., Batley J., Edwards D., Meng J., Li R., Lawley C.T., Pauquet J., Laga B., Cheung W., Iniguez-Luy F., Dyrszka E., Rae S., Stich B., Snowdon R.J., Sharpe A.G., Ganal M.W., Parkin I.A. A high-density SNP genotyping array for Brassica napus and its ancestral diploid species based on optimised selection of single-locus markers in the allotetraploid genome. Theoretical and Applied Genetics, 2016, 129(10): 1887-1899 CrossRef
  39. Lowe A.J., Moule C., Trick M., Edwards K.J. Efficient large-scale development of microsatellites for marker and mapping applications in Brassica crop species. Theoretical and Applied Genetics, 2004, 108(6): 1103-1112 CrossRef
  40. Suwabe K., Iketani H., Nunome T., Kage T., Hirai M. Isolation and characterization of microsatellites in Brassica rapa L. Theoretical and Applied Genetics, 2002, 104(6-7): 1092-1098 CrossRef
  41. Kresovich S., Szewc-McFadden A.K., Bliek S.M., McFerson J.R. Abundance and characterisation of simple-sequence repeats (SSRs) isolated from a size-fractionated genomic library of Brassica napus L. (rapeseed). Theoretical and Applied Genetics, 1995, 91(2): 206-211 CrossRef
  42. Plieske J., Struss D. Microsatellite markers for genome analysis in Brassica. I. Development in Brassica napus and abundance in Brassicaceae species. Theoretical and Applied Genetics, 2001, 102(5): 689-694 CrossRef
  43. Hasan M., Seyis F., Badani A.G., Pons-Kühnemann J., Friedt W., Lühs W., Snowdon R.J. Analysis of genetic diversity in the Brassica napus L. gene pool using SSR markers. Genetic Resources and Crop Evolution, 2006, 53(4): 793-802 CrossRef
  44. Tommasini L., Batley J., Arnold G.M., Cooke R.J., Donini P., Lee D., Law J.R., Lowe C., Moule C., Trick M., Edwards K.J. The development of multiplex simple sequence repeat (SSR) markers to complement distinctness, uniformity and stability testing of rape (Brassica napus L.) varieties. Theoretical and Applied Genetics, 2003, 106(6): 1091-1101 CrossRef
  45. Dubina E.V., Koroleva S.V., Garkusha S.V., Yurchenko S.A., Esaulova L.V. Dostizheniya nauki i tekhniki APK, 2016, 30(8): 49-51 (in Russ.).
  46. Suwabe K., Tsukada H., Iketani H., Hatakeyama K., Fujimura M., Nunome T., Fukuoka H., Matsumoto S., Hirai M. Identification of two loci for resistance to clubroot (Plasmodiophora brassicae Wornin) in Brassica rapa L. Theoretical and Applied Genetics, 2003, 107(6): 997-1002 CrossRef
  47. Kato T., Hatakeyama K., Fukino N., Matsumoto S. Fine mapping of the clubroot resistance gene CRb and development of a useful selectable marker in Brassica rapa. Breeding Science, 2013, 63(1): 116-124 CrossRef
  48. Artem'eva A.M., Ignatov A.N., Volkova A.I., Kocherina N.V., Konopleva M.N., Chesnokov Yu.V. Physiological and genetic components of black rot resistance in double haploid lines of Brassica rapa L. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2018, 53(1): 157-169 CrossRef
  49. Shilov I.A. V sbornike: Problemy agrobiotekhnologii [In: Problems of agrobiotechnology]. Moscow, 2012: 140-162 (in Russ.).
  50. Aniskina Yu.V. Tekhnologiya genotipirovaniya kul'turnykh i dikorastushchikh form Brassica na osnove analiza polimorfizma mikrosatellitov. Avtoreferat kandidatskoi dissertatsii [Genotyping technology for cultivated and wild forms of Brassica based on the analysis of microsatellite polymorphism. PhD Thesis]. Moscow, 2006 (in Russ.).
  51. Aniskina Yu.V., Velishaeva N.S., Shilov I.A., Khavkin E.E. Genotipirovanie paslenovykh i krestotsvetnykh rastenii metodom mikrosatellitnogo analiza. Metodicheskie rekomendatsii [Genotyping of nightshade and cruciferous plants by microsatellite analysis. Methods]. Moscow, 2005 (in Russ.).
  52. Mason A.S., Zhang J., Tollenaere R., Vasquez Teuber P., Dalton-Morgan J., Hu L., Edwards D., Redden R., Batley J. High-throughput genotyping for species identification and diversity assessment in germplasm collections. Molecular Ecology Resources, 2015, 15(5): 1091-1101 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)