doi: 10.15389/agrobiology.2019.3.512eng

UDC: 633.18:581.1:631.547



A.Kh. Sheudzhen1, 2, T.N. Bondareva1, 2, P.N. Kharchenko3, I.A. Doroshev2

1All-Russian Rice Research Institute, 3, Belozernii, Krasnodar, Russia 350921, e-mail, (✉ corresponding author);
2Trubilin Kuban State Agrarian University, 13, ul. Kalinina, Krasnodar, 350044 Russia, e-mail;
3All-Russian Research Institute of Agricultural Biotechnology, 42, ul. Timiryazevskaya, Moscow, 127550 Russia, e-mail

Sheudzen A.Kh.
Kharchenko P.N.
Doroshev I.A.

Received January 21, 2019


Rice is mainly produced in countries with a favorable climate for culture, lying between the equator and 45° latitude, but in recent years, interest in expanding of rice-growing to the north increases. In Russia, the terrotory of rice growing in Krasnodar region is located at the northern border of the crop area. For this reason, in certain years ripening of rice coincides with unfavorable weather conditions that cause an increase in the growing period, which leads to a decrease in the productivity of plants, delay in harvesting and losses of a significant part of the yield. In this regard, there is a need to develop ways to accelerate ripening without reducing the productivity of plants. Such a technique is artificial leaf senescence, a purposeful regulation of metabolism at the final stages of plant development with the use of chemicals. Artificial senescence should be used in case of delayed ripening, which is most often observed in late crops (due to postponement of sowing because of weather conditions), thinned crops or crops receiving excessive nitrogen nutrition. Although at the present time, this technique is little used, mainly due to the long warm period in the long-term cycle of temperature fluctuations, the probability of a period with adverse weather conditions for ripening and harvesting rice in the coming years is high. The effectiveness of this method depends on the composition of the chemical agents, on the terms of treatment and the weather conditions. In addition, to apply this technology to modern rice varieties, it is necessary to estimate its effectiveness and adjust relevant protocols regarding the grain ripening peculiarities. In the present work, we compared some physiological indices of the modern Russian intensive rice variety Khazar plants during ripening, as well as the yield structure and total yielding, as influenced by the composition and timing of the chemicals used under different weather conditions during three years of the observation. It was shown, that the most suitable chemicals are aqueous solutions of ammonium nitrate (15 kg/ha) with the addition of manganese (400 g/ha) or selenium (200 g/ha). Modified selenium solution should be used if it is necessary to start harvesting in 14-20 days. Treatment of plants with a solution modified by manganese stimulates the synthesis and attraction of assimilates in the grain, which is accompanied by a not so rapid completion of ontogenesis, but a significant increase in yield. The treatment of rice crops should be carried out during the stage of milk-wax ripeness of the grain. In the “cold” years, this technilogue allows faster (by 5-6 days) and more (up 0.69-7.39 %) loss of panicle moisture compared to untreted control plants, but also increases yield by 4.2-9.3 %. In the years with favorable weather conditions for rice ripening, artificial senescence provides slight decrease in panicle moisture (by 0.66-2.78 %), but greater increase in yielding (by 7.88-14.73 %). The study of the mechanism of the observed effects can broaden our knowledge about the crop biology and varietal specificity and can be useful in developing technologies for adapting rice plants to north-growing with the use of a new generation chemicals which should be safe for humans and the environment, and in breeding for accelerated maturation under the northern conditions.

Keywords: Oryza sativa L., rice, artificial senescence, accelerated maturation, foliar application, urea, ammonium nitrate, Mn, Se.



  1. Paddy rice production worldwide 2017-2018, by country. Available Accessed 02.06.2019.
  2. Chauhan B.S, Jabran K., Mahajan G. Rice production worldwide. Springer International Publising AG, Sqitzerland, 2017 CrossRef
  3. Kraehmer H., Thomas C., Vidotto F. Rice production in Europe. In: Rice production worldwide. B. Chauhan, K. Jabran, G. Mahajan (eds.). Springer, Cham, 2017: 93-116 CrossRef
  4. Tesio F., Tabacchi M., Cerioli S., Follis F. Sustainable hybrid rice cultivation in Italy. A review. Agron. Sustain. Dev., 2014, 34: 93-102.
  5. Beser N., Surek H., Sahin M. Search of effective resistant genes to the rice blast pathogen (Magnaporthe grisea) under field conditions in Turkey. Fresenius Environmental Bulletin, 2015, 24: 791-795.
  6. Vorob'ev N.V. Fiziologicheskie osnovy formirovaniya urozhaya risa [Physiological basis of rice crop formation]. Krasnodar, 2013 (in Russ.).
  7. de Vries G.E. Growing rice in Canada. Trends in Plant Science, 2000, 5(1): 8 CrossRef
  8. Clement C., Burrus M., Audran J.-C. Floral organ growth and carbohydrate content during pollen development in Lilium. American Journal of Botany, 1996, 83(4): 459-469 CrossRef
  9. Lemoine R., La Camera S., Atanassova R., Dédaldéchamp F., Allario T., Pourtau N., Bonnemain J.-L., Laloi M., Coutos-Thévenot P., Maurousset L., Faucher M., Girousse C., Lemonnier P., Parrilla J., Durand M. Source-to-sink transport of sugar and regulation by environmental factors. Front. Plant Sci., 2013, 4: 272 CrossRef
  10. Ray S., Choudhuri M.A. Mobilization of metabolites from leaves to grains as the cause of monocarpic senescence in rice. PlantPhysiol., 1981, 68: 1345-1348.
  11. Lim P.O., Kim H.J., Nam H.G. Leaf senescence. Annual Review of Plant Biology,2007, 58: 115-136 CrossRef
  12. Li Z., Pan X., Guo X., Fan K., Lin W. Physiological and transcriptome analyses of early leaf senescence for ospls1 mutant rice (Oryza sativa L.) during the grain-filling stage. Int. J. Mol. Sci., 2019, 20: 1098 CrossRef
  13. Bukreeva G.I., Gritsai T.I., Domchenko M.I. Trudy Kubanskogo gosudarstvennogo agrarnogo universiteta, 2015, 56: 85-91 (in Russ.).
  14. Evdokimov M.G., Yusov V.S., Tatina B.M., Andreeva V.V. Vestnik Altaiskogo gosudarstvennogo agrarnogo universiteta, 2015, 11(133): 5-9 (in Russ.).
  15. Wojciechowska N., Sobieszczuk‐Nowicka E., Bagniewska‐Zadworna A. Plant organ senescence — regulation by manifold pathways. Plant Biol. J., 2018, 20: 167-181 CrossRef
  16. Afonin N.M. Effektivnost' desikatsii i senikatsii posevov kukuruzy pri vyrashchivanii na zerno. Kukuruza i sorgo, 2010, 3: 14-16 (in Russ.).
  17. Kolosova E.N. Materialy Mezhdarodnoi nauchno-prakticheskoi konferentsii «Nauchnoe obespechenie agropromyshlennogo proizvodstva» [Proc. Int. Conf. «Scientific support of agroindustrial production»]. Kursk, 2010: 214-216 (in Russ.).
  18. Distelfeld A., Avni R., Fischer A.M. Senescence, nutrient remobilization, and yield in wheat and barley. J. Exp. Bot., 2014, 65: 3783-3798 CrossRef
  19. Jibran R., Hunter A., Dijkwel P. Hormonal regulation of leaf senescence through integration of developmental and stress signals. Plant Mol. Biol., 2013, 82: 547-561 CrossRef
  20. Lin M., Pang C., Fan S., Song M., Wei H., Yu S. Global analysis of the Gossypium hirsutum L. transcriptome during leaf senescence by RNA-seq. BMC Plant Biology, 2015, 15: 43 CrossRef
  21. Kushu A.A. Povysheniya produktivnosti semenovodcheskikh risovykh polei  putem ispol'zovaniya senikatsii v usloviyakh Adygei. Avtoreferat kandidatskoi dissertatsii [Improving the productivity of seed paddy fields through the use of an artificial aging technikigy in conditions of Adygea. PhD Thesis]. Krasnodar, 1995 (in Russ.).
  22. Vorob'ev P.N. V sbornike: Selektsiya, semenovodstvo i tekhnologiya vozdelyvaniya ovoshchnykh kul'tur [In: Breeding, seed production and vegetable cultivation technology]. Voronezh, 1989: 77-83 (in Russ.).
  23. Molyavko A.A., Marukhlenko A.V., Erenkova L.A., Borisova N.P. Zashchita i karantin rastenii, 2017, 11: 30-31 (in Russ.).
  24. Goswamy B.K., Srivastava G.C. Effect of foliar application of urea on leaf senescence and photosynthesis in sunflower (Helianthus annuus L.). Photosynthetica, 1988, 22(1): 99-104.
  25. Roman'ko Yu.A., Mel'nik A.V. Izvestiya Samarskoi gosudarstvennoi sel'skokhozyaistvennoi akademii, 2016, 1(2): 15-18 (in Russ.).
  26. Seren K.D., Ignat'ev L.A. Agrokhimiya, 2008, 2: 50-56 (in Russ.).
  27. Pavlyutina I.P., Moiseenko I.Ya., Likhachev B.S. Kormoproizvodstvo, 2005, 1: 24-27 (in Russ.).
  28. Sheudzhen A.Kh., Bondareva T.N. Agrokhimiya. Ch. 2. Metodika agrokhimicheskikh issledovanii [Agrochemistry. Part 2. Methods of agrochemical research]. Krasnodar, 2015 (in Russ.).
  29. Aleshin E.P., Avakyan K.M., Podlesnyi I.V., Semenova L.M., Korovyanskii A.G., Rybachenko S.I. Byulleten' NTI VNII risa, 1986, 36: 37-40 (in Russ.).
  30. Craft J.C., Lindsey L.E., Barker D.J., Lindsey A.J. Quantification of soybean leaf senescence and maturation as impacted by soil- and foliar-applied nitrogen. Crop, Forage & Turfgrass Management, 2019, 5: 180051 CrossRef
  31. Springer A., Kang C.H., Rustgi S., von Wettstein D., Reinbothe C., Pollmann S.,  Reinbothe S. Programmed chloroplast destruction during leaf senescence involves 13-lipoxygenase (13-LOX). PNAS USA, 2016, 113(12): 3383-3388 CrossRef
  32. Panda D., Sarkar R.K. Natural leaf senescence: Probed by chlorophyll fluorescence, CO2 photosynthetic rate and antioxidant enzyme activities during grain filling in different rice cultivars. Physiol. Mol. Biol. Plants, 2013, 19(1): 43-51 CrossRef
  33. Avila-Ospina L., Marmagne A., Talbotec J., Krupinska K., Masclaux-Daubresse C. The identification of new cytosolic glutamine synthetase and asparagine synthetase genes in barley (Hordeum vulgare L.), and their expression during leaf senescence. J. Exp. Bot., 2015, 66(7): 2013-2026 CrossRef
  34. Britto D.T., Kronzucker H.J. NH4+ toxicity in higher plants: a critical review. Journal of Plant Physiology, 2002, 159(6): 567-584 CrossRef
  35. Bieker S., Zentgraf U. Plant senescence and nitrogen mobilization and signaling. In: Senescence and senescence-related disorders. Z. Wang, H. Inuzuka (eds.). Intech Open, 2013: 53-83 CrossRef
  36. Nawaz F., Naeem M., Ashraf M.Y., Tahir M.N., Zulfiqar B., Salahuddin M., Shabbir R.N., Aslam M. Selenium supplementation affects physiological and biochemical processes to improve fodder yield and quality of maize (Zea mays L.) under water deficit conditions. Front. Plant Sci., 2016, 7: 1438 CrossRef
  37. Takano J., Wada M., Ludewig U., Schaaf G., von Wirén N., Fujiwara T. The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell, 2006, 18: 1498-1509 CrossRef
  38. Socha A.L., Guerinot M.L. Mn-euvering manganese: The role of transporter gene family members in manganese uptake and mobilization in plants. Front. Plant Sci., 2014, 5: 106 CrossRef
  39. Sheudzhen A.Kh. Teoriya i praktika primeneniya mikro- i ul'tramikroudobrenii v risovodstve [Theory and practice of micro- and ultra-micronutrient fertilizers in rice cultivation]. Maikop, 2016 (in Russ.).
  40. Sheudzhen A.Kh., Bondareva T.N., Kharchenko P.N., Doroshev I.A., Khurum Kh.D. Time determination of conducting senication of rice crops taking into account the sum of effective temperatures. Russian Agricultural Sciences, 2018, 44(6): 499-504 CrossRef
  41. Page V., Weisskopf L., Feller U. Heavy metals in white lupine: uptake. Root-to-shoot transfer and redistribution within the plant. New Phytologist, 2006, 171: 329-241 CrossRef
  42. Wyman A. J., Yocum C. F. Structure and activity of the photosystem II manganese-stabilizing protein: role of the conserved disulfide bond. Photosynthesis Research, 2005, 85: 359-372 CrossRef
  43. Popelkova H., Yocumb C.F. PsbO, the manganese-stabilizing protein: analysis of the structure—function relations that provide insights into its role in photosystem II. Journal of Photochemistry and Photobiology B: Biology, 2011, 104(1-2): 179-190 CrossRef
  44. Sheudzhen A.Kh., Bondareva T.N., Doroshev I.A., Esipenko S.V. Selenovye udobreniya na posevakh risa [Selenium fertilizer for rice crops]. Maikop, 2017 (in Russ.).
  45. Seppanen M., Turakainen M., Hartikainen H. Selenium effects on oxidative stress in potato. Plant Science, 2003, 165: 311-319 CrossRef
  46. Irmak S. Effects of selenium application on plant growth and some quality parameters in peanut (Arachis hypogaea). Pak. J. Biol. Sci., 2017, 20(2): 92-99 CrossRef
  47. Couto N., Wood J., Barber J. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radic. Biol. Med., 2016, 95: 27-42 CrossRef
  48. Trivedi D.K., Gill S.S., Yadav S., Tuteja N. Genome-wide analysis of glutathione reductase (GR) genes from rice and Arabidopsis. Plant Signal. Behav., 2013, 8(2): e23021 CrossRef
  49. Garousi F. Toxicity of selenium, application of selenium in fertilizers, selenium treatment of seeds, and selenium in edible parts of plants. Acta Universitatis Sapientiae, Alimentaria, 2017, 10: 61-74 CrossRef
  50. Rani N., Dhillon K.S., Dhillon S.K. Critical levels of selenium in different crops grown in an alkaline silty loam soil treated with selenite-Se. Plant Soil, 2005, 277: 367-374 CrossRef
  51. Wu X., Li J., Li D., Liu C.M. Rice caryopsis development II: Dynamic changes in the endosperm. J. Integr. Plant Biol., 2016, 58: 786-798 CrossRef
  52. Brooking I.R. Maize ear moisture during grain-filling, and its relation to physiological maturity and grain-drying. Field Crops Research, 1990, 23(1): 55-68 CrossRef
  53. Maiorano A., Fanchini D., Donatellib M. MIMYCS.Moisture, a process-based model of moisture content in developing maize kernels. European Journal of Agronomy, 2014, 59: 86-95 CrossRef
  54. Lin L., He Y., Xiao Z., Zhao K., Dong T., Nie P. Rapid-detection sensor for rice grain moisture based on NIR spectroscopy. Appl. Sci., 2019, 9(8): 1654 CrossRef
  55. Molokov L.G., Pokhno S.L., Zeleneva I.A., Grigor'ev V.A., Dvornik E.D. Risovodstvo, 2013, 23: 68-72 (in Russ.).
  56. Shkhapatsev A.K. Novye tekhnologii, 2006, 2: 44-46 (in Russ.).
  57. Sheudzhen A.Kh., Galkin G.A., Bondareva T.N. Risovodstvo, 2007, 11: 24-28 (in Russ.).






Full article PDF (Rus)

Full article PDF (Eng)