doi: 10.15389/agrobiology.2019.3.458eng

UDC: 633.72:581.1:58.056

Supported financially by the Russian Science Foundation, project No. 18-76-10001



L.S. Samarina, A.V. Ryndin, L.S. Malyukova, M.V. Gvasaliya,
V.I. Malyarovskaya

All-Russian Research Institute of Floriculture and Subtropical Crops, 2/28, ul. Yana Fabritsiusa, Sochi, 354002 Russia, e-mail,, (✉ corresponding author),,

Samarina L.S.
Gvasaliya M.V.
Ryndin A.V.
Malyarovskaya V.I.
Malyukova L.S.

Received February 9, 2019


The main constraint in the tea plants growth in the world is drought, which reduces the productivity of plantations by 15-45 % (R.M. Bhagat et al., 2010; R.D. Baruah et al., 2012). In this regard, physiological (M. Mukhopadhyay et al., 2014; T.K. Maritim et al., 2015) and molecular mechanisms (W.D. Wang et al, 2016; Y. Guo et al., 2017) drought tolerance of tea plants are a matter of great interest. The purpose of this review is to summarize the international experience of phenotyping and genotyping of tea drought response to create a comprehensive picture of the plant response to osmotic stress and to understand the reproducibility of response mechanisms in different climatic regions. During drought stress the main signaling role is played by abscisic, jasmonic and salicylic acids, as well as ethylene (S.C. Liu et al., 2016), the metabolic pathway of which includes cascades of physiological changes and involves response genes (T. Umezawa et al., 2010). It was reported that tea plants had increased expression of genes encoding cytokinin biosynthesis enzymes (trans-zeatin and cis-zeatin and isopentyniladine) under drought, and during recovery its expression decreased. It is assumed that an increase in cytokinin content may partially mitigate the negative effect of stress on photosynthetic apparatus and slow down leaf senescence induced by stress. An important adaptive response of tea plant to drought is an increase in the concentration of proline, glycine-betaine, mannitol and other osmolytes which neutralize reactive oxygen species, protect macromolecules from damage by free radicals, and maintain the osmotic potential of the cell (W.D. Wang et al., 2016). Under the drought in tea plant starch decomposes to glucose, and mannitol, trehalose, and sucrose contents increase. The accumulation of reactive oxygen species (ROS) directly correlates with the accumulation of glucose, to prevent the negative effects of stress. In addition, it has been shown that many genes involved in the metabolism and signaling of phytohormones, osmolytes, antioxidants and carbohydrates are also involved in tolerance to osmotic stress (S. Gupta et al., 2013; Y. Guo et al., 2017). Several families of transcription factors play a crucial role in the regulation of tea response to drought in tea. In particular, 39 CsbHLH genes were identified with increased expression in drought conditions (X. Cui et al., 2018). From the NAC family, the CsNAC17 and CsNAC30 genes have been identified that can be used in the breeding for drought tolerance of tea (Y.-X. Wang et al., 2016). From the WRKY family, the CsWRKY2 gene has been identified which is involved in the mechanisms of protection from drought and can act as an activator or repressor of abscisic acid (ABA). From the DREB gene family, 29 CsDREB have been identified, which increase drought tolerance of tea through ABA-dependent and ABA-independent pathways and can act as a link between different biochemical networks in response to drought (M. Wang et al., 2017). From the HD-Zip family, Cshdz genes have been identified which are divided into 4 groups according to their functions, of which HD-Zip I and HD-Zip IV play the major role in drought response in tea (W. Shen et al., 2018). Of the HSP (HSF) family, 47 transcription factors were identified in tea, including 7 CsHSP90, 18 CsHSP70, and 22 CsHSP genes the expression of which increases resistance to oxidative stress, protection of photosystem II and stabilizes photosynthesis during drought (J. Chen et al., 2018). The transcription factors of the bZIP family also play the important role in ABA-mediated drought response. From the Dof family, 29 transcription factors were revealed in tea plants and their increased expression was shown in the resistant cultivars under drought. The important role of CsDof-22 in ABA biosynthesis has been revealed (H. Li et al., 2016). An increased expression of the SBP family CsSBP genes in tea plants led to assumption of its participation in signaling pathways involving ABA, gibberellic acid, and methyl jasmonate (P. Wang et al., 2018). The genes of the CsLOX1, CsLOX6 and CsLOX7 family of lipoxygenases in tea can also play an important role in drought response (J. Zhu et al., 2018). In addition, miRNA play an important role in gene regulation at transcription and translation level in tea plants (Y. Guo et al., 2017). Despite the great progress in the functional genomics of tea plant further research is needed to identify the location of various genes in regulatory networks and their impact in drought tolerance.

Keywords: tea plant, Camellia sinensis, drought, phytohormones, osmolytes, antioxidant system, transcription factors.




  1. Bhagat R.M., Baruah R.D., Safigue S. Climate and tea [Camellia sinensis (L.) O. Kuntze] production with special reference to north eastern India: a review. Journal of Environmental Research and Development, 2010, 4(4): 1017-1028.
  2. Baruah R.D., Bhagat R.M. Climate trends of Northeastern India: a longterm pragmatic analysis for tea production. Two and a Bud, 2012, 59(2): 46-49.
  3. Malyukova L.S. Plodovodstvo i yagodovodstvo Rossii, 2014, 38(1): 255-261 (in Russ.).
  4. Cheruiyot E.K., Mumera L.M., Ng’etich W.K., Hassanali A., Wachira F.N. High fertilizer rates increase susceptibility of tea to water stress. Journal of Plant Nutrition, 2009, 33(1): 115-129 CrossRef
  5. Reynolds M.P., Ortiz R. Adapting crops to climate change: a summary. In: Climate change and crop production. M.P. Reynolds (ed.). CAB International, 2010: 1-8 CrossRef
  6. Sinclair T.R. Challenges in breeding for yield increase for drought. Trends in Plant Science, 2011, 16(6): 289-293 CrossRef
  7. Ashraf M. Inducing drought tolerance in plants: recent advances. Biotechnology Advances, 2010, 28(1): 169-183 CrossRef
  8. Varshney R.K., Bansal K.C., Aggarwal P.K., Datta S.K., Craufurd P.Q. Agricultural biotechnology for crop improvement in a variable climate: hope or hype? Trends in Plant Science, 2011; 16(7): 363-371 CrossRef
  9. Tsonev S., Todorovska E., Avramova V., Kolev S., Abu-Mhadi N., Christov N.K. Genomics assisted improvement of drought tolerance in maize: QTL approaches. Biotechnology & Biotechnological Equipment, 2009, 23(4): 1410-1413 CrossRef
  10. Mukhopadhyay M., Mondal T.K. The physio-chemical responses of Camellia plants to abiotic stresses. J. Plant Sci. Res., 2014, 1(1): 1-12.
  11. Bernier J., Atlin G.N., Serraj R., Kumar A., Spaner D. Breeding upland rice for drought resistance. Journal of the Science of Food and Agriculture, 2008, 88(6): 927-939 CrossRef
  12. Fleury D., Jefferies S., Kuchel H., Langridge P. Genetic and genomic tools to improve drought tolerance in wheat. Journal of Experimental Botany, 2010, 61(12): 3211-3222 CrossRef
  13. Manavalan L.P., Guttikonda S.K., Tran L.S., Nguyen H.T. Physiological and molecular approaches to improve drought resistance in soybean. Plant and Cell Physiology, 2009, 50(7): 1260-1276 CrossRef
  14. Yadav R.S., Sehgal D., Vadez V. Using genetic mapping and genomics approaches in understanding and improving drought tolerance in pearl millet. Journal of Experimental Botany, 2011, 62(2): 397-408 CrossRef
  15. Araus J.L., Slafer G.A., Reynolds M.P., Royo C. Plant breeding and water relations in C3 cereals: what should we breed for? Annals of Botany, 2002, 89 (7): 925-940 CrossRef
  16. Pchikhachev E.K., Korzun B.V. Subtropicheskie kul'tury, 2010, 1(4): 219-220 (in Russ.).
  17. Tuov M.T. Nauchnye osnovy povysheniya kachestva i produktivnosti chainykh plantatsii Rossii. Doktorskaya dissertatsiya [Scientific basis for improving quality and productivity of tea plantations in Russia. DSc Thesis]. Sochi, 1997 (in Russ.).
  18. Das A., Das S., Mondal T.K. Identification of differentially expressed gene profiles in young roots of tea (Camellia sinensis (L.) O. Kuntze) subjected to drought stress using suppression subtractive hybridization. Plant Mol. Biol. Rep., 2012, 30(5): 1088-1101 CrossRef
  19. Maritim T.K., Kamunya S.M., Mireji P., Mwendia C.M., Muoki R.C., Cheruiyot E.K., Wachira F.N. Physiological and biochemical response of tea (Camellia sinensis (L.) O. Kuntze) to water-deficit stress. The Journal of Horticultural Science and Biotechnology, 2015, 90(4): 395-400 CrossRef
  20. Jaleel C.A., Manivannan P., Wahid A., Farooq M., Somasundaram R., Panneerselvam R. Drought stress in plants: a review on morphological characteristics and pigments composition. Int. J. Agric. Biol., 2009, 11(1): 100-105.
  21. Waheed A., Hamid F.S., Shan A.H., Ahmad H., Khalid A., Abbasi F.M., Ahmad N., Aslam S., Sarwar S. Response of different tea (Camellia sinensis L.) clones against drought stress. J. Mater. Environ. Sci., 2012, 3(2): 395-410.
  22. Gvasaliya M.V. Spontannye i indutsirovannye sorta i formy chaya (Samellia sinensis (L.) Kuntze) vo vlazhnykh subtropikakh Rossii i Abkhazii, perspektivy ikh razmnozheniya i sokhraneniya v kul'ture in vitro. Kandidatskaya dissertatsiya [Spontaneous and induced varieties and forms of tea (Camellia sinensis (L.) Kuntze) in the humid subtropics of Russia and Abkhazia, the prospects for their reproduction and preservation in culture in vitro. PhD Thesis]. Krasnodar, 2015 (in Russ.).
  23. Nyabundi K.W., Owuor P.O., Netondo G.W., Bore J.K. Genotype and environment interactions of yields and yield components of tea (Camellia sinensis) cultivars in Kenya. American Journal of Plant Sciences, 2016, 7(6): 855-869 CrossRef
  24. Vavilova L.V., Korzun B.V. Novye tekhnologii, 2016, 4: 114-120 (in Russ.">CrossRef
  25. Liu S.C., Yao M.Z., Ma C.L., Jin J.Q., Ma J.Q., Li C.F. Physiological changes and differential gene expression of tea plant under dehydration and rehydration conditions. Scientia Horticulturae, 2015, 184(5): 129-141 CrossRef
  26. Liu S.C., Jin J.Q., Ma J.Q., Yao M.Z., Ma C.L., Li C.F., Ding Z.T., Chen L. Transcriptomic analysis of tea plant responding to drought stress and recovery. PLoS ONE, 2016, 11(1): e0147306 CrossRef
  27. Li X., Liu F. Drought stress memory and drought stress tolerance in plants: biochemical and molecular basis. In: Drought stress tolerance in plants. M. Hossain, S. Wani, S. Bhattacharjee, D. Burritt, L.S. Tran (eds.). Springer, Cham, 2016, Vol. 1: 17-44 CrossRef
  28. Daszkowska-Golec A.D., Szarejko I. Open or close the gate-stomata action under the control of phytohormones in drought stress conditions. Front. Plant Sci., 2013, 4: 138 CrossRef
  29. Umezawa T., Nakashima K., Miyakawa T., Kuromori T., Tanokura M., Shinozaki K., Yamaguchi-Shinozaki K. Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport. Plant Cell Physiol., 2010, 51(11): 1821-1839 CrossRef
  30. Miller G., Schlauch K., Tam R., Cortes D., Torres M.A., Shulaev V., Jeffery L. Dang, Mittler R. The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Science Signaling, 2009, 2(84): 1-10 CrossRef
  31. Upadhyaya H., Dutta B.K., Sahoo L., Panda S.K. Comparative effect of Ca, K, Mn and B on post-drought stress recovery in tea [Camellia sinensis (L.) O. Kuntze]. American Journal of Plant Sciences, 2012, 3(4): 443-460 CrossRef
  32. Meyer S., Mumm P., Imes D., Endler A., Weder B., Al‐Rasheid K.A.S., Geiger D.,  Marten I.,  Martinoia E.,  Hedrich R. AtALMT12 represents an R-type anion channel required for stomatal movement in Arabidopsis guard cells. The Plant Journal, 2010, 63(6): 1054-1062 CrossRef
  33. Upadhyaya H., Panda S.K., Dutta B.K. CaCl2 improves post-drought recovery potential in Camellia sinensis (L) O. Kuntze. Plant Cell Rep., 2011, 30(4): 495-503 CrossRef
  34. Gao X.Y., Yang G.P., Xu Z.Q. Xu F.C. Effect of calcium on antioxidant enzymes of lipid peroxidation of soy-bean leaves under water stress. J. South China Agric. Univ., 1999, 2: 58-62.
  35. Bowler C., Fluhr B. The role of calcium and activated oxygen as signals for controlling cross-tolerance. Trends Plant Sci., 2000, 5(6): 241-243 CrossRef
  36. Miura K., Tada Y. Regulation of water, salinity, and cold stress responses by salicylic acid. Front. Plant Sci., 2014, 5: 4 CrossRef
  37. Defez R., Andreozzi A., Dickinson M., Charlton A., Tadini L., Pesaresi P., Bianco C. Improved drought stress response in alfalfa plants nodulated by an IAA over-producing Rhizobium strain. Front Microbiol., 2017, 14(8): 2466 CrossRef
  38. Farooq M., Wahid A., Kobayashi N., Fujita D., Basra S.M.A. Plant drought stress: effects, mechanisms and management. Agron. Sustain. Dev., 2009, 29(1): 185-212 CrossRef
  39. Damayanthi M.M.N., Mohotti A.J., Nissanka S.P. Comparison of tolerant ability of nature field grown tea (Camellia sinensis L.) cultivars exposed to a drought stress in Passara Area. Tropical Agricultural Research, 2010, 22(1): 66-75 CrossRef
  40. Mukhopadhyay M., Ghosh P.D., Mondal T.K. Effect of boron deficiency on photosynthesis and antioxidant responses of young tea (Camellia sinensis (L.) O. Kuntze) plantlets. Russ. J. Plant Physiol., 2013, 60(5): 633-639 CrossRef
  41. Pritula Z.V., Malyukova L.S. Problemy agrokhimii i ekologii, 2017, 3: 31-34 (in Russ.).
  42. Tholakalabavi A., Zwiazek, J.J, Thorpe, T.A. Effect of mannitol and glucose-induced osmotic stress on growth, water relations, and solute composition of cell suspension cultures of poplar (Populus deltoids var. Occidentalis) in relation to anthocyanin accumulation. In Vitro Cell Dev. Biol. — Plant, 1994, 30(3): 164-170 CrossRef
  43. Serraj R., Sinclair T.R. Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant, Cell Environ., 2002, 25(2): 333-341 CrossRef
  44. Guo Y., Zhao S., Zhu C.H., Chang X., Yue C.H., Wang Z.H., Lin Y., Lai Z.H. Identification of drought-responsive miRNAs and physiological characterization of tea plant (Camellia sinensis L.) under drought stress. BMC Plant Biol., 2017, 17(1): 211 CrossRef
  45. Szabados L., Savoure A. Proline: a multifunctional amino acid. Trends Plant Sci., 2010, 15(2): 89-97 CrossRef
  46. Farooq M., Basra S.M.A., Wahid A., Cheema Z.A., Cheema M.A., Khaliq A. Physiological role of exogenously applied glycinebetaine in improving drought tolerance of fine grain aromatic rice (Oryza sativa L.). J. Agron. Crop Sci., 2008, 194(5): 325-333 CrossRef
  47. Upadhyaya H., Panda S.K. Abiotic stress responses in tea [Camellia sinensis (L.) O. Kuntze]: an overview. Reviews in Agricultural Science, 2013, 1: 1-10 CrossRef
  48. Ciereszko I. Sucrose metabolism in plant tissues under stress conditions: key enzymes, localization and function In: Compartmentation of responses to stresses in higher plants, true or false. W. Maksymiec (ed.). Transworld Research Network, Trivandrum, 2009: 193-218 (ISBN: 978-81-7895-422-6).
  49. ElSayed A.I., Rafudeen M.S., Golldack D. Physiological aspects of raffinose family oligosaccharides in plants: protection against abiotic stress. Plant Biology, 2014, 16(1): 1-8 CrossRef
  50. Sami F., Yusuf M., Faizan M., Faraz A., Hayat S. Role of sugars under abiotic stress. Plant Physiology and Biochemistry, 2016, 109: 54-61 CrossRef
  51. Thalmann M., Santelia D. Starch as a determinant of plant fitness under abiotic stress. New Phytologist, 2017, 214(3): 943-951 CrossRef
  52. Kamanga R.M., Mbega E., Ndakidemi P. Drought tolerance mechanisms in plants: physiological responses associated with water deficit stress in Solanum lycopersicum Adv. Crop. Sci. Tech., 2018, 6(3): 362 CrossRef
  53. Das A., Mukhopadhyay M., Sarkar B., Saha D., Mondal T.K. Influence of drought stress on cellular ultrastructure and antioxidant system in tea cultivars with different drought sensitivities. J. Environ. Biol., 2015, 36(4): 875-882.
  54. Belous O.G. Aktivnost' katalazy v list'yakh chaya v zone vlazhnykh subtropikov Rossii. LAP LAMBERT Academic Publishing, Saarbruchen, 2012.
  55. Pedranzani H., Vigliocco A. Evaluation of jasmonic acid and salicylic acid levels in abiotic stress tolerance: Past and present. In: Mechanisms behind phytohormonal signalling and crop abiotic stress tolerance. Chapter 15. V.P. Singh, S. Singh, S.M. Prasad (eds.). Nova Science Publishers, 2017: 1-60.
  56. Manivannan P., Jaleel C.A., Kishorekumar A., Sankar B., Somasundaram R., Sridharan R., Panneerselvam R. Drought stress induced changes in the biochemical parameters and photosynthetic pigments of cotton (Gossypium hirsutum L.). Indian J. Appl. Pure Biol., 2007, 22: 369-372.
  57. Pritula Z.V., Malyukova L.S., Velikii A.V. Plodovodstvo i yagodovodstvo Rossii, 2017, 51: 299-307 (in Russ.).
  58. Tyerman S.D., Niemietz C.M., Bramley H. Plant aquaporins: multifunctional water and solute channels with expanding roles. Plant, Cell & Environment, 2002, 25(2): 173-194 CrossRef
  59. Wahid A., Gelani S., Ashraf M., Foolad M.R. Heat tolerance in plants: an overview. Environmental and Experimental Botany, 2007, 61(3): 199-223 CrossRef
  60. Spalding E.P., Harper J.F. The ins and outs of cellular Ca2+ transport. Current Opinion in Plant Biology, 2011, 14(6): 715-720 CrossRef
  61. Saruhashi M., Ghosh T.K., Arai K., Ishizaki Y., Hagiwara K., Komatsu K., Shiwa Y., Izumikawa T., Yoshikawa H., Umezawa T., Sakata Y., Takezawa D. Plant Raf-like kinase integrates abscisic acid and hyperosmotic stress signaling upstream of SNF1-related protein kinase 2. Proceedings of the National Academy of Sciences, 2015, 112(46): E6388-6396 CrossRef
  62. Wan X., O’Quinn R.P., Pierce H.L., Joglekar A.P., Gall W.E., DeLuca J.G., Carroll C.W., Liu S.-T., Yen T. J., McEwen B.F., Stukenberg T., Desai A., Salmon E.D. Protein architecture of the human kinetochore microtubule attachment site. Cell, 2009, 137(4): 672-684 CrossRef
  63. Kim T.H., Böhmer M., Hu H.H., Nishimura N., Schroeder J.I. Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annual Review of Plant Biology, 2010, 61: 561-591 CrossRef
  64. Gupta S., Bharalee R., Bhorali P., Das S.K., Bhagawati P., Bandyopadhyay T., B. Gohain, Agarwal N., Ahmed P., Borchetia S., Kalita M.C., Handique A.K., Das S. Molecular analysis of drought tolerance in tea by cDNA-AFLP based transcript profiling. Mol. Biotechnol., 2013, 53(3): 237-248 CrossRef
  65. Gelmesa D., Dechassa N., Mohammed D., Gebre E., Monneveux P., Bündig C., Winkelmann T. In vitro screening of potato genotypes for osmotic stress tolerance. Open Agriculture, 2017, 2(1): 308-316 CrossRef
  66. Wang W.D., Xin H.H., Wang M.L., Ma Q.P., Wang L., Kaleri N.A., Wang Y.H., Li X.H. Transcriptomic analysis reveals the molecular mechanisms of drought-stress-induced decreases in Camellia sinensis leaf quality. Front Plant Sci., 2016, 7(795): 385-412 CrossRef
  67. Cui X., Wang Y.-X., Liu Z.-W., Wang W.-L., Li H., Zhuang J. Transcriptome-wide identification and expression profile analysisof the bHLH family genes in Camellia sinensis. Functional & Integrative Genomics, 2018, 18(5): 489-503 CrossRef
  68. Wang Y.-X., Liu Z.-W., Wu Z.-J., Li H., Zhuang J. Transcriptome-wide identification and expression analysis of the NAC gene family in tea plant [Camellia sinensis (L.) O. Kuntze]. PLoS ONE, 2016, 11(11): e0166727 CrossRef
  69. Wang Y., Shu Z., Wang W., Jiang X., Li D., Pan J., Li X. CsWRKY2, a novel WRKY gene from Camellia sinensis, is involved in cold and drought stress responses. Biologia Plantarum, 2016, 60(3): 443-451 CrossRef
  70. Wang M., Zhuang J., Zou Z., Li Q., Xin H., Li X. Overexpression of a Camellia sinensis DREB transcription factor gene (CsDREB) increases salt and drought tolerance in transgenic Arabidopsis thaliana. J. Plant Biol., 2017, 60: 452-461 CrossRef
  71. Shen W., Li H., Teng R., Wang Y., Wang W., Zhuang J. Genomic and transcriptomic analyses of HD-Zip family transcription factors and their responses to abiotic stress in tea plant (Camellia sinensis). Genomics, 2018 (In Press, Corrected Proof) CrossRef
  72. Chen J., Gao T., Wan S., Zhang Y., Yang J., Yu Y., Wang W. Genome-wide identification, classification and expression analysis of the HSP gene superfamily in tea plant (Camellia sinensis). Int. J. Mol. Sci., 2018, 19(9): 2633 CrossRef
  73. Wang L., Cao H., Qian W., Yao L., Hao X., Li N., Yang Y., Wang X. Identification of a novel bZIP transcription factor in Camellia sinensis as a negative regulator of freezing tolerance in transgenic arabidopsis. Annals of Botany, 2017, 119(7): 1195-1209 CrossRef
  74. Li H., Huang W., Liu Z.-W., Wang Y.-X., Zhuang J. Transcriptome-based analysis of Dof family transcription factors and their responses to abiotic stress in tea plant (Camellia sinensis). Int J Genomics, 2016: 5614142 CrossRef
  75. Wang P., Chen D., Zheng Y., Jin S., Yang J., Ye N. Identification and expression analyses of SBP-box genes reveal their involvement in abiotic stress and hormone response in tea plant (Camellia sinensis). Int. J. Mol. Sci., 2018, 19(11): 3404 CrossRef
  76. Zhu J., Wang X., Guo L., Xu Q., Zhao S., Li F., Yan X., Liu S., Wei C. Characterization and alternative splicing profiles of the lipoxygenase gene family in tea plant (Camellia sinensis). Plant and Cell Physiology, 2018, 59(9): 1765-1781 CrossRef
  77. Guo Y., Zhao S., Zhu C., Chang X., Yue C., Wang Z., Lin Y., Lai Z. Identification of drought-responsive miRNAs and physiological characterization of tea plant (Camellia sinensis L.) under drought stress. BMC Plant Biology, 2017, 17: 211 CrossRef






Full article PDF (Rus)

Full article PDF (Eng)