PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2019.3.409eng

UDC: 633.1:631.523:577.21

Acknowledgements:
Supported financially by Russian Science Foundation (grant No. 16-16-00097)

 

GENE RESOURCES OF PERENNIAL WILD CEREALS INVOLVED IN BREEDING TO IMPROVE WHEAT CROP (review)

P.Yu. Kroupin1, 2, M.G. Divashuk1, 2, G.I. Karlov1

1All-Russian Research Institute of Agricultural Biotechnology, 42, ul. Timiryazevskaya, Moscow, 127550 Russia, e-mail pavelkroupin1985@gmail.com (✉ corresponding author), divashuk@gmail.com, karlov@iab.ac.ru;
2Timiryazev Russian State Agrarian University—Moscow Agrarian Academy, 49, ul. Timiryazevskaya, Moscow, 127550 Russia, e-mail pavelkroupin1985@gmail.com

ORCID:
Kroupin P.Yu. orcidorg/0000-0001-6858-3941
Karlov G.I. orcid.org/0000-0002-9016-103X
Divashuk M.G. orcid.org/0000-0001-6221-3659

Received January 30, 2019

 

The reduction of wheat genetic diversity is an urgent problem in modern wheat breeding, which is primarily due to the limited number of varieties had been used in wheat pedigree. As a result of the depletion of the genetic pool of wheat, its resistance to phytopathogens has dropped, that generally reduces the stability of the agrophytocenosis. One of the ways to expand the genetic diversity of wheat is the transfer of genes of economically valuable traits from closely related genera and species, classified into three genetic pools: primary (varieties of hard and bread wheat), secondary (Triticum and Aegilops species), tertiary (most distant Triticeae species). The paper presents a review of success in gene transfer of economically valuable traits into the wheat genome from wheat’s wild perennial relatives of the tertiary genetic pool: Thinopyrum, Dasypyrum, Pseudoroegneria, Elymus, and Agropyron. Representatives of these species have different levels of ploidy (di-, tetra, hexa- and even decaploids) and combine the genomes J (= E), St, W, Y, X, V, H, P, as well as their variants. Various levels of transfer of hereditary material into the wheat genome are considered, i.e. amphidiploids, addition and substitution lines, lines with translocations and small introgressions. Special attention is paid to amphidiploids, namely wheat-wheatgrass hybrids (PPG) combining the wheat genome and a whole or a part of the wheatgrass genome. The wheat-wheatgrass hybrids are considered both as an independent objects of cultivation and as a “breeding bridge”, that is, an intermediate step in the transfer of genes from wheatgrass to wheat. The transfer of large chromatin fragments carrying the target gene is often associated with the additional transfer of undesirable genes which reduce the amount and impair the quality of the final wheat products. Therefore, introgressive lines of wheat are considered the most valuable forms, having a small chromatin insertion of an alien genome carrying a useful gene. Since the genomes of the tertiary genetic pool members are the most distant from the wheat genomes, an important problem considered in the review is the production of introgressions by recombination of homeologous chromosomes. The transfer of useful genes in wheat genome from its wild relatives is illustrated by examples, that consider the introgression of genes for resistance to fungal diseases (leaf and stem rust, powdery mildew, Fusarium blight, Septoria blight), viruses (yellow dwarfism streak mosaic), mite colonization, tolerance to drought, salinity and pre-harvest sprouting, storage proteins (glutenins) and perennial lifestyle of the plant. It is noted that wild relatives can serve as donors not only of genes responsible for resistance to stress factors, but also increase yields by increasing fertility, the number of spikelets and other elements of the yield structure, as well as improving the quality of the final product due to new variants of storage proteins. Special attention is paid to the development and use of molecular and molecular cytogenic markers which allow breeders to transfer target genes or regions of chromatin, as well as to monitor their introgression into the wheat genome in segregating populations. At the same time, in practical selection, different types of markers can be successfully used, i.e. those designed for the whole chromosome or its shoulder, linked to the chromatin region carrying the target gene, as well as the marker developed directly to the nucleotide sequence of the gene itself. Whole genome sequencing and genome editing technologies is noted to play in future a significant role in introduction of genetic material of wild relatives into wheat to improve its breeding programs.

Keywords: wheat, genes, wide hybridization, Thinopyrum, Dasypyrum, Pseudoroegneria, Elymus, Agropyron, wheatgrass, wheat-wheatgrass hybrids.

 

REFERENCES

  1. Balfourier F., Bouchet S., Robert S., De Oliveira R., Rimbert H., Kitt J., Choulet F., International Wheat Genome Sequencing Consortium, BreedWheat Consortium, Paux E. Worldwide phylogeography and history of wheat genetic diversity. Science Advances, 2019, 5(5): eaav0536 CrossRef
  2. Jaradat A.A. Phenotypic divergence in the meta-population of the Hourani durum wheat landrace. J. Food Agric. Env., 2006, 4(3): 186-191 CrossRef
  3. Jaradat A.A. Wheat landraces: a mini review. Emir. J. Food Agric., 2013, 25(1): 20-29 CrossRef
  4. Girma E. Genetic erosion of wheat (Triticum spp.): concept, research results and challenges. Journal of Natural Sciences Research, 2017, 7(23): 72-81.
  5. Miller J. Genetic erosion: crop plants threatened by government neglect. Science New Series, 1973, 182(4118): 1231-1233 CrossRef
  6. Day P.R. Genetic variability of crops. Annual Review of Phytopathology, 1973, 11(1): 293-312 CrossRef
  7. Dzyubenko N.I. Materialy Mezhdunarodnoi nauchno-prakticheskoi konferentsii «Geneticheskie resursy kul'turnykh rastenii, problemy mobilizatsii, inventarizatsii, sokhraneniya i izucheniya genofonda vazhneishikh sel'skokhozyaistvennykh kul'tur dlya resheniya prioritetnykh zadach selektsii» [Proc. Int. Conf. «Genetic resources of cultivated plants, problems of mobilization, inventory, preservation and study of gene pool for breeding priorities»]. St. Petersburg, 2001: 24-26 (in Russ.).
  8. Martynov S.P., Dobrotvorskaya T.V. Geneticheskaya eroziya v sortakh myagkoi pshenitsy, realizovannykh v Rossii. Materialy konferentsii «Genetika v XXI veke: sovremennoe sostoyanie i perspektivy razvitiya» [Proc. Conf. «Genetics in the 21st century: current state and development prospects»]. Moscow, 2004: 75 (in Russ.).
  9. Pukhal'skii V.A. Vestnik VOGiS, 2005, 9(3): 306-316 (in Russ).
  10. Glazko V.I., Glazko T.T. Izvestiya Timiryazevskoi sel'skokhozyaistvennoi akademii, 2010, 3: 101-114 (in Russ).
  11. Tarantul V.Z. Tolkovyi slovar' po molekulyarnoi i kletochnoi biotekhnologii. Tom 1 [Explanatory dictionary of molecular and cell biotechnology. Vol. 1]. Moscow, 2015 (in Russ).
  12. Glazko V.I. Genetic unit and sustainable development of agroecosystem. Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2007, 6: 9-15 (in Russ.).
  13. Goncharov N.P., Shumnyi V.K. Vestnik VOGiS, 2008, 12(4): 509-523 (in Russ.).
  14. Gorbunov Yu., Soadatova R., Kazantseva E. Genofond rastenii Krasnoi knigi Rossiiskoi Federatsii, sokhranyaemyi v kollektsiyakh botanicheskikh sadov i dendrariev [The gene pool of plants of the Russian Federation Red Book, preserved in collections of botanical gardens and arboretums]. Moscow, 2012 (in Russ.).
  15. Shamanin V.P., Pototskaya I.V., Trushchenko A.Yu., Chursin A.S., Kuz'mina S.P., Krotova L.A. Vestnik Altaiskogo gosudarstvennogo agrarnogo universiteta, 2012, 5(91): 13-16 (in Russ.).
  16. FAOSTAT. Available http://www.fao.org/faostat/en/#data. Accessed 30.01.2019.
  17. Smith S., Bubeck D., Nelson B., Stanek J., Gerke J. Genetic diversity and modern plant breeding. In: Genetic diversity and erosion in plants. Indicators and prevention. V. 1. M.R. Ahuja, S. Mohan Jain (eds.). Springer International Publishing, Switzerland, 2015: 55-88.
  18. Govindaraj M., Vetriventhan M., Srinivasan M. Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives. Genetics Research International, 2015, 2015: Article ID 431487 CrossRef
  19. Ablova I.B., Bespalova L.A., Kolesnikov F.A., Nabokov G.D., Kovtunenko V.Ya., Filobok V.A., Davoyan R.O., Khudokormova Zh.N., Mokhova L.M., Levchenko Yu.G., Tarkhov A.S. Zernovoe khozyaistvo Rossii, 2016, 5: 1-7 (in Russ).
  20. Novoselskaya-Dragovich A.Yu., Fisenko A.V., Imasheva A.G., Pukhalskiy V.A. Comparative analysis of the genetic diversity dynamics at gliadin loci in the winter common wheat Triticum aestivum L. cultivars developed in Serbia and Italy over 40 years of scientific breeding. Russian Journal of Genetics, 2007, 43(11): 1236-1242 CrossRef
  21. Martynov S.P., Dobrotvorskaya T.V. Trudy po prikladnoi botanike, genetike i selektsii, 2012, 169: 193-209 (in Russ.).
  22. Orabi J., Jahoor A., Backes G. Changes in allelic frequency over time in European bread wheat (Triticum aestivum L.) varieties revealed using DArT and SSR markers. Euphytica, 2014, 197(3): 447-462 CrossRef
  23. Wulff B.B., Moscou M.J. Strategies for transferring resistance into wheat: from wide crosses to GM cassettes. Front. Plant Sci., 2014, 5: 692 CrossRef
  24. Wang R.R.C. Agropyron and Psathyrostachys. In: Wild crop relatives: genomic and breeding resources. V. 1. C. Kole (ed.). Springer Berlin Heidelberg, 2011: 77-108 CrossRef
  25. Zhang C., Fan X., Yu H.Q., Zhang L., Wang X.L., Zhou Y.H. Different maternal genome donor to Kengyilia species inferred from chloroplast trnL-F sequences. Biologia Plantarum, 2009, 53(4): 759-763 CrossRef
  26. Mahelka V., Kopecky D., Pastova L. On the genome constitution and evolution of intermediate wheatgrass (Thinopyrum intermediumPoaceae, Triticeae). BMC Evolutionary Biology, 2011, 11(1): 127 CrossRef
  27. Wang Q., Xiang J., Gao A., Yang X., Liu W., Li X., Li L. Analysis of chromosomal structural polymorphisms in the St, P and Y genomes of Triticeae (Poaceae). Genome, 2010, 53: 241-249 CrossRef
  28. Mason-Gamer R.J. Phylogeny of a genomically diverse group of Elymus (Poaceae) allopolyploids reveals multiple levels of reticulation. PLoS ONE. 2013, 8: e78449 CrossRef
  29. Wang R.R.-C., Larson S.R., Jensen K.B., Bushman S., DeHaan L., Wang S., Yan X. Genome evolution of intermediate wheatgrass as revealed by EST-SSR markers developed from its three progenitor diploid species. Genome, 2015, 58: 63-70 CrossRef
  30. Chen Q., Conner R.L., Laroche A., Thomas J.B. Genome analysis of Thinopyrum intermedium and Thinopyrum ponticum using genomic in situ hybridization. Genome, 1998, 41(4): 580-586 CrossRef
  31. Divashuk M.G., Khuat T.M., Kroupin P.Y., Kirov I.V., Romanov D.V., Kiseleva A.V., Khrustaleva L.I., Alexeev D.G., Zelenin A.S., Klimushina M.V., Razumova O.V., Karlov G.I. Variation in copy number of Ty3/Gypsy centromeric retrotransposons in the genomes of Thinopyrum intermedium and its diploid progenitors. PLoS ONE, 2016, 11(4): e0154241 CrossRef
  32. Baum B., Edwards T., Johnson D. What does the nr5S DNA multigene family tell us about the genomic relationship between Dasypyrum breviaristatum and D. villosum (Triticeae: Poaceae)? Mol. Genet. Genomics, 2014, 289: 553-565 CrossRef
  33. Gradzielewska A., Tyrka M., Leśniowska-Nowak J., Nazaruk J. Genetic relationships among representatives of Dasypyrum, Secale and Triticum species revealed with RAPD and ISSR markers. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2014, 42(2): 420-430 CrossRef
  34. Zhang P., Dundas I.S., Xu S.S., Friebe B., McIntosh R.A., Raupp W.J. Chromosome engineering techniques for targeted introgression of rust resistance from wild wheat relatives. In: Wheat rust diseases. Methods and protocols, methods in molecular biology, Vol. 1659. S. Periyannan (ed.). Springer Science+Business Media LLC, 2017: 163-172 CrossRef
  35. Ceoloni C., Kuzmanovic L., Forte P., Virili M. E., Bitti A. Wheat-perennial Triticeae introgressions: major achievements and prospects. In: Alien introgression in wheat: cytogenetics, molecular biology, and genomic. M. Molnár-Láng, C. Ceoloni, J. Doležel (eds.). Springer International Publishing Switzerland, 2015: 273-314 CrossRef
  36. Khuat T.M.L., Divashuk M.G., Kroupin P.Yu., Nguyen Ph.A., Kiseleva A.V., Karlov G.I. Izvestiya Timiryazevskoi sel'skokhozyaistvennoi akademii, 2015, 2: 29-35 (in Russ).
  37. Alexandrov O.S., Divashuk M.G., Karlov G.I. Development of the St/J and V genome specific molecular marker based on 5S rDNA polymorphism in Thinopyrum bessarabicum, Pseudoroegneria spicata, and Dasypyrum villosum. Moscow University Biological Sciences Bulletin, 2018, 73(1): 18-23 CrossRef
  38. Kocheshkova A.A., Divashuk M.G., Krupin P.Yu., Karlov G.I. Vestnik Bashkirskogo universiteta, 2013, 18(3): 736-738 (in Russ.).
  39. Pochtovyi A.A., Karlov G.I., Divashuk M.G. Vestnik Bashkirskogo universiteta, 2013, 18(3): 745-747 (in Russ.).
  40. Klimushina M.V. Sravnitel'nyi molekulyarno-geneticheskii analiz genov Wx u razlichnykh vidov triby pshenitsevykh. Avtoreferat kandidatskoi dissertatsii [Comparative molecular genetic analysis of Wx genes in various species of the wheat tribe. PhD Thesis]. Moscow, 2013 (in Russ.).
  41. Kocheshkova A.A., Divashuk M.G., Kroupin P.Y., Karlov G.I. Izvestiya Timiryazevskoi sel'skokhozyaistvennoi akademii, 2014, 5: 5-12 (in Russ.).
  42. Pochtovyy A.A., Kroupin P.Yu., Divashuk M.G., Kocheshkova A.A., Sokolov P.A., Karlov G.I. Clonning of Dreb1 gene in wheat wild relatives and development of a DNA marker for its monitoring in wheat background. Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2018, 53(3): 499-510 CrossRef
  43. Kuznetsova V.M. Materialy XIX Vserossiiskoi konferentsii molodykh uchenykh «Biotekhnologiya v rastenievodstve, zhivotnovodstve i sel'skokhozyaistvennoi mikrobiologii» (15-16 aprelya 2019 goda, g. Moskva) [Proc. XIX Russian Conf. of young scientists «Biotechnologies in plant growing, livestock and agricultural microbiology»]. Moscow, 2019: 37-38 (in Russ.).
  44. Sokolov P.A., Krupin P.Yu., Divashuk M.G., Karlov G.I. Izvestiya Timiryazevskoi sel'skokhozyaistvennoi akademii, 2017, 4: 147-157 (in Russ.).
  45. Shen X., Ohm H. Fusarium head blight resistance derived from Lophopyrum elongatum chromosome 7E and its augmentation with Fhb1 in wheat. Plant Breeding, 2006, 125: 424-429 CrossRef
  46. Jauhar P.P., Peterson T.S., Xu S.S. Cytogenetic and molecular characterization of a durum alien disomic addition line with enhanced tolerance to Fusarium head blight. Genome, 2009, 52: 467-483 (doi 10.1139/g09-014).
  47. Jauhar P.P., Peterson T.S. Cytological and molecular characterization of homoeologous group-1 chromosomes in hybrid derivatives of a durum disomic alien addition line. Plant Genome, 2011, 4: 102-109 CrossRef
  48. Liu H., Dai Y., Chi D., Huang S., Li H., Duan Y., Cao W., Gao Y., Fedak G., Chen J. Production and molecular cytogenetic characterization of a durum wheat-Thinopyrum elongatum 7E disomic addition line with resistance to Fusarium Head Blight. Cytogenet. Genome Res., 2017, 153(3): 165-173 CrossRef
  49. Anderson J.M., Bucholtz D.L., Sardesai N., Santini J.B., Gyulai G., Williams C.E., Stephen B., Goodwin S.B. Potential new genes for resistance to Mycosphaerella graminicola identified in Triticum aestivum-Lophopyrum elongatum disomic substitution lines. Euphytica, 2010, 172: 251-262 CrossRef
  50. Mullan D., Mirzaghaderi G., Walker E., Colmer T., Francki M. Development of wheat–Lophopyrum elongatum recombinant lines for enhanced sodium ‘exclusion’ during salinity stress. Theor. Appl. Genet., 2009, 119(7): 1313-1323 CrossRef
  51. Lammer D., Cai X., Arterburn M., Chatelain J., Murray T., Jones S. A single chromosome addition from Thinopyrum elongatum confers a polycarpic, perennial habit to annual wheat. J. Exp. Bot., 2004, 55: 1715-1720 CrossRef
  52. Li D., Long D., Li T., Wu Y., Wang Y., Zeng J., Xu L., Fan X., Sha L., Zhang H., Zhou Y., Kang H. Cytogenetics and stripe rust resistance of wheat—Thinopyrum elongatum hybrid derivatives. Molecular Cytogenetics, 2018, 11: 16 CrossRef
  53. Jensen K.B., Griffin G.D. Resistance of diploid Triticeae species and accessions to the Columbia root-knot nematode, Meloidogyne chitwoodi. J. Nematol., 1994, 26(4S): 635-639.
  54. King I., Purdie K., Rezanoor H., Koebner R., Miller T., Reader S., Nicholson P. Characterization of Thinopyrum bessarabicum chromosome segments in wheat using random amplified polymorphic DNAs (RAPIDs) and genomic in situ hybridization. Theor. Appl. Genet., 1993, 86: 895-900 CrossRef
  55. Luo Z., Chen F., Feng D., Xia G. LMW-GS genes in Agropyron elongatum and their potential value in wheat breeding. Theor. Appl. Genet., 2005, 111: 272-280 CrossRef
  56. Gao X., Liu S.W., Sun Q., Xia G.M. High frequency of HMW-GS sequence variation through somatic hybridization between Agropyron elongatum and common wheat. Planta, 2010, 231: 245-250 CrossRef
  57. Qi Z., Du P., Qian B., Zhuang L., Chen H., Chen T., Shen J., Guo J., Feng Y., Pei Z. Characterization of a wheat-Thinopyrum bessarabicum (T2JS-2BS.2BL) translocation line. Theor. Appl. Genet., 2010, 121: 589-597 CrossRef
  58. Patokar C., Sepsi A., Schwarzacher T., Kishii M., Heslop-Harrison J. Molecular cytogenetic characterization of novel wheat-Thinopyrum bessarabicum recombinant lines carrying intercalary translocations. Chromosoma, 2015, 125(1): 163-172 CrossRef
  59. Grewal S., Yang C., Edwards S., Scholefield D., Ashling S., Burridge A., King I., King J. Characterisation of Thinopyrum bessarabicum chromosomes through genome-wide introgressions into wheat. Theor. Appl. Genet., 2017, 131(2): 389-406 CrossRef
  60. McArthur R., Zhu X., Oliver R., Klindworth D., Xu S., Stack R., Wang R., Cai X. Homoeology of Thinopyrum junceum and Elymus rectisetus chromosomes to wheat and disease resistance conferred by the Thinopyrum and Elymus chromosomes in wheat. Chromosome Res., 2012, 20(6): 699-715 CrossRef
  61. Wang R., Li X., Hu Z., Zhang J., Larson S., Zhang X., Grieve C., Shannon M. Development of salinity tolerant wheat recombinant lines from a wheat disomic addition line carrying a Thinopyrum junceum chromosome. Int. J. Plant Sci., 2003, 164(1): 25-33 CrossRef
  62. Li W., Zhang Q., Wang S., Langham M., Singh D., Bowden R., Xu S. Development and characterization of wheat—sea wheatgrass (Thinopyrum junceiforme) amphiploids for biotic stress resistance and abiotic stress tolerance. Theor. Appl. Genet., 2018, 132(1): 163-175 CrossRef
  63. Li H., Wang X. Thinopyrum ponticum and Th. intermedium: the promising source of resistance to fungal and viral diseases of wheat. J. Genet. Genomics, 2009, 36(9): 557-565 CrossRef
  64. Rahardjo C., Gajadeera C., Simsek S., Annor G., Schoenfuss T., Marti A., Ismail B. Chemical characterization, functionality, and baking quality of intermediate wheatgrass (Thinopyrum intermedium). J. Cereal Sci., 2018, 83: 266-274 CrossRef
  65. Banjade J. Effects of dough conditioners on rheology and bread quality of intermediate wheatgrass. M.S. thesis. University of Minnesota, 2018.
  66. Jungers J.M., Frahm C.S., Tautges N.E., Ehlke N.J., Wells M.S., Wyse D.L., Sheaffer C.C. Growth, development, and biomass partitioning of the perennial grain crop Thinopyrum intermedium. Ann. Appl. Biol., 2018, 172(3): 346-354 CrossRef
  67. Tsitsin N.V. Mnogoletnyaya pshenitsa [Perennial wheat]. Moscow, 1978 (in Russ.).
  68. Cauderon Y., Saigne B., Dauge M. The resistance to wheat rusts of Agropyron intermedium and its use in wheat improvement. Proc. 4th International Wheat Genet Symposium. L.M.S. Sears, E.R. Sears (eds.). Columbia, Mo., 1973: 401-407
  69. Georgieva M., Kruppa K., Tyankova N., Molnar Lang M. Molecular cytogenetic identification of a novel hexaploid wheat—Thinopyrum intermedium partial amphiploid with high protein content. Turk. J. Biol., 2016, 40: 554-560 CrossRef
  70. Cui L., Ren Y., Murray T., Yan W., Guo Q., Niu Y., Sun Y., Li H. Development of perennial wheat through hybridization between wheat and wheatgrasses: a review. Engineering, 2018, 4(4): 507-513 CrossRef
  71. Kroupin P., Divashuk M., Belov V., Glukhova L., Aleksandrov O., Karlov G. Comparative molecular cytogenetic characterization of partial wheat-wheatgrass hybrids. Rus. J. Genet., 2011, 47(4): 432-437 CrossRef
  72. Trifonova A.A., Boris K.V., Dedova L.V., Mel'nik V.A., Ivanova L.P., Kuz'mina N.P., Zavgorodnii S.V., Upelniek V.P. Vavilovskii zhurnal genetiki i selektsii, 2018, 22(6): 648-653 CrossRef (in Russ.).
  73. Divashuk M.G., Krupin P.Yu., Bazhenov M.S., Klimushina M.V., Belov V.I., Semenova E.V., Karlov G.I. Izvestiya Timiryazevskoi sel'skokhozyaistvennoi akademii, 2012, 5: 29-37 (in Russ.).
  74. Belov V.I., Ivanova L.P., Zavgorodnii S.V., Upelniek V.P. Byulleten' Glavnogo botanicheskogo sada, 2013, 4(199): 49-55 (in Russ.).
  75. Krupin P.Yu., Divashuk M.G., Belov V.I., Zhemchuzhina A.I., Kovalenko E.D., Upelniek V.P., Karlov G.I. Investigation of intermediary wheat-agropyron hybrids on resistance to leaf rust. Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2013, 48(1): 68-73 CrossRef
  76. Krupin P.Yu., Divashuk M.G., Bazhenov M.S., Gritsenko L.A., Tarakanov I.G., Upelniek V.P., Belov V.I., Pochtovyi A.A., Starikova E.V., Kkhuat Tkhi Mai L., Klimushina M.V., Davydova A.N., Karlov G.I. Salt tolerance polymorfism in seadlings of wheat-wheatgrass hybrids. Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2013, 48(5): 44-53 CrossRef (in Russ.).
  77. Kocheshkova A.A., Kroupin P.Y., Bazhenov M.S., Karlov G.I., Pochtovyy A.A., Divashuk M.G., Upelniek V.P., Belov V.I. Pre-harvest sprouting resistance and haplotype variation of ThVp-1 gene in the collection of wheat-wheatgrass hybrids. PLoS ONE, 2017, 12(11): e0188049 CrossRef
  78. Liu J., Chang Z., Zhang X., Yang Z., Li X., Jia J., Zhan H., Guo H., Wang J. Putative Thinopyrum intermedium-derived stripe rust resistance gene Yr50 maps on wheat chromosome arm 4BL. Theor. Appl. Genet., 2013, 126(1): 265-274 CrossRef
  79. Zhan H., Zhang X., Li G., Pan Z., Hu J., Li X., Qiao L., Jia J., Guo H., Chang Z., Yang Z. Molecular characterization of a new wheat-Thinopyrum intermedium translocation line with resistance to powdery mildew and stripe rust. Int. J. Mol. Sci., 2015, 16(1): 2162-2173 CrossRef
  80. Wang Y., Wang H. Characterization of three novel wheat-Thinopyrum intermedium addition lines with novel storage protein subunits and resistance to both powdery mildew and stripe rust. J. Genet. Genomics, 2016 43(1): 45-48 CrossRef
  81. Salina E.A., Adonina I.G., Stasyuk A.I., Leonova I.N., Badaeva E.D., Shishkina A.A., Kroupin P.Y., Divashuk M.G., Starikova E.V., Khuat T.M.L., Karlov G.I., Syukov V.V. A Thinopyrum intermedium chromosome in bread wheat cultivars as a source of genes conferring resistance to fungal diseases. Euphytica, 2015, 204(1): 91-101 CrossRef
  82. Sibikeev S.N., Druzhin A.E., Badaeva E.D., Shishkina A.A., Dragovich A.Y., Gultyaeva E.I., Kroupin P.Y., Karlov G.I., Khuat T.M., Divashuk M.G. Comparative analysis of Agropyron intermedium (Host) Beauv 6Agi and 6Agi2 chromosomes in bread wheat cultivars and lines with wheat—wheatgrass substitutions. Russ. J. Genet., 2017, 53(3): 314-324 CrossRef
  83. Davoyan R.O., Bebyakina I.V., Davoyan E.R., Zinchenco A.N., Zubanova Y.S., Mikov D.S. Introgression of common wheat lines with genetic material of Agropyron glaucum. Russian Journal of Genetics: Applied Research, 2016, 6(1): 54-61 CrossRef
  84. Friebe B., Jiang J.M., Raupp W.J., McIntosh R.A., Gill B.S. Characterization of wheat alien translocations conferring resistance to diseases and pests: current status. Euphytica, 1996, 91(1): 59-87 CrossRef
  85. Liu W., Seifers D.L., Qi L.L., Friebe B., Gill B.S. A compensating wheat-Thinopyrum intermedium Robertsonian translocation conferring resistance to wheat streak mosaic virus and Triticum mosaic virus. Crop Sci., 2011, 51(6): 2382-2390 CrossRef
  86. Danilova T.V., Zhang G., Liu W., Friebe B., Gill B.S. Homoeologous recombination-based transfer and molecular cytogenetic mapping of a wheat streak mosaic virus and Triticum mosaic virus resistance gene Wsm3 from Thinopyrum intermedium to wheat. Theor. Appl. Genet., 2017, 130(3): 549-556 CrossRef
  87. Banks P., Larkin P., Bariana H., Lagudah E., Appels R., Waterhouse P., Brettell R., Chen X., Xu H., Xin Z., Qian Y., Zhou X., Cheng Z., Zhou G. The use of cell culture for subchromosomal introgressions of barley yellow dwarf virus resistance from Thinopyrum intermedium to wheat. Genome, 1995, 38(2): 395-405 CrossRef
  88. Lang T., La S., Li B., Yu Z., Chen Q., Li J., Yang E., Li G., Yang Z. Precise identification of wheat—Thinopyrum intermedium translocation chromosomes carrying resistance to wheat stripe rust in line Z4 and its derived progenies. Genome, 2018, 61(3): 177-185 CrossRef
  89. Huang Q., Li X., Chen W.Q., Xiang Z.P., Zhong S.F., Chang Z.J., Zhang M., Zhang H.Y., Tan F.Q., Ren Z.L., Luo P.G. Genetic mapping of a putative Thinopyrum intermedium-derived stripe rust resistance gene on wheat chromosome 1B. Theor. Appl. Genet., 2014, 127(4): 843-853 CrossRef
  90. Luo P.G., Luo H.Y., Chang Z.J., Zhang H.Y., Zhang M., Ren Z.L. Characterization and chromosomal location of Pm40 in common wheat: a new gene for resistance to powdery mildew derived from Elytrigia intermedium. Theor. Appl. Genet., 2009, 118(6): 1059-1064 CrossRef
  91. He R., Chang Z., Yang Z., Yuan Z., Zhan H., Zhan X., Liu J. Inheritance and mapping of powdery mildew resistance gene Pm43 introgressed from Thinopyrum intermedium into wheat. Theor. Appl. Genet., 2009, 118(6): 1173-1180 CrossRef
  92. Fedak G., Han F. Characterization of derivatives from wheat—Thinopyrum wide crosses. Cytogenet. Genome Res., 2005, 109(1-3): 350-359 CrossRef
  93. Zhang Z.Y., Xu J.S., Xu Q.J., Larkin P., Xin Z.Y. Development of novel PCR markers linked to the BYDV resistance gene Bdv2 useful in wheat for marker assisted selection. Theor. Appl. Genet., 2004, 109(2): 433-439 CrossRef
  94. Ayala-Navarrete L., Tourton E., Mechanicos A.A., Larkin P.J. Comparison of Thinopyrum intermedium derivatives carrying barley yellow dwarf virus resistance in wheat. Genome, 2009, 52(6): 537-546 CrossRef
  95. Zhang Z.Y., Lin Z.S., Xin Z.Y. Research progress in BYDV resistance genes derived from wheat and its wild relatives. J. Genet. Genomics, 2009, 36(9): 567-573 CrossRef
  96. Friebe B., Qi L.L., Wilson D.L., Chang Z.J., Seifers D.L., Martin T.J., Fritz A.K., Gill B.S. Wheat—Thinopyrum intermedium recombinants resistant to wheat streak mosaic virus and Triticum mosaic virus. Crop Sci., 2009, 49(4): 1221-1226 CrossRef
  97. Friebe B., Mukai Y., Dhaliwal H.S., Martin T.J., Gill B.S. Identification of alien chromatin specifying resistance to wheat streak mosaic and greenbug in wheat germplasm by C-banding and in situ hybridization. Theor. Appl. Genet., 1991, 81(3): 381-389 CrossRef
  98. Larkin P.J., Newell M.T., Hayes R.C., Aktar J., Norton M.R., Moroni S.J., Wade L.J. Progress in developing perennial wheats for grain and grazing. Crop and Pasture Science, 2014, 65(11): 1147-1164 CrossRef/li>
  99. Lloyd S. Perennial wheat. Independent Project in Biology. 2015. Available http://stud.epsilon.slu.se/7778/. No date.
  100. Kuzmanovic L., Gennaro A., Benedettelli S., Dodd I.C., Quarrie S.A., Ceoloni C. Structural-functional dissection and characterization of yield-contributing traits originating from a group 7 chromosome of the wheatgrass species Thinopyrum ponticum after transfer into durum wheat. J. Exp. Bot., 2014, 65(2): 509-525 CrossRef
  101. Shen X., Ohm H. Molecular mapping of Thinopyrum-derived Fusarium head blight resistance in common wheat. Mol. Breeding, 2007, 20(2): 131-140 CrossRef
  102. Forte P., Virili M.E., Kuzmanović L., Moscetti I., Gennaro A., D’Ovidio R., Ceoloni C. A novel assembly of Thinopyrum ponticum genes into the durum wheat genome: pyramiding Fusarium head blight resistance onto recombinant lines previously engineered for other beneficial traits from the same alien species. Mol. Breeding, 2014, 34(4): 1701-1716 CrossRef.
  103. Singh M., Mallick N., Chand S., Kumari P., Sharma J., Sivasamy M., Jayaprakash P., Prabhu K., Jha S., Vinod Marker-assisted pyramiding of Thinopyrum-derived leaf rust resistance genes Lr19 and Lr24 in bread wheat variety HD2733. J. Genet., 2017, 96(6): 951-957 CrossRef
  104. Li H., Chen Q., Conner R.L., Guo B., Zhang Y., Graf R.J., Laroche A., Jia X., Liu G., Chu C. Molecular characterization of a wheat—Thinopyrum ponticum partial amphiploid and its derivatives for resistance to leaf rust. Genome, 2003, 46(5): 906-913 CrossRef
  105. Dundas I., Zhang P., Verlin D., Graner A., Shepherd K. Chromosome engineering and physical mapping of the Thinopyrum ponticum translocation in wheat carrying the rust resistance gene Sr26. Crop Sci., 2015, 55(2): 648-657 CrossRef
  106. Mago R., Zhang P., Xia X., Zhang J., Hoxha S., Lagudah E., Graner A., Dundas I. Transfer of stem rust resistance gene SrB from Thinopyrum ponticum into wheat and development of a closely linked PCR-based marker. Theor. Appl. Genet., 2019, 132(2): 371-382 CrossRef
  107. McIntosh R.A., Dyck P.L., Green G.J. Inheritance of leaf rust and stem rust resistances in wheat cultivars Agent and Agatha. Aust. J. Agric. Res., 1977, 28(1): 37-45 CrossRef
  108. Gupta S.K., Charpe A., Prabhu K.V., Haque Q.M.R. Identification and validation of molecular markers linked to the leaf rust resistance gene Lr19 in wheat. Theor. Appl. Genet., 2006, 113(6): 1027-1036 CrossRef
  109. Friebe B., Jiang J., Knott D.R., Gill B.S. Compensation indices of radiation-induced wheat-Agropyron elongatum translocations conferring resistance to leaf rust and stem rust. Crop Sci., 1994, 34(2): 400-404 CrossRef
  110. Kim N.-S., Armstrong K., Knott D.R. Molecular detection of Lophopyrum chromatin in wheat-Lophopyrum recombinants and their use in physical mapping of chromosome 7D. Theor. Appl. Genet., 1993, 85(5): 561-567 CrossRef
  111. Chen G., Zheng Q., Bao Y., Liu S., Wang H., Li X. Molecular cytogenetic identification of a novel dwarf wheat line with introgressed Thinopyrum ponticum chromatin. J. Biosci., 2012, 37(1): 149-155 CrossRef
  112. Pozniak C., Knox R., Clarke F., Clarke J. Identification of QTL and association of a phytoene synthase gene with endosperm color in durum wheat. Theor. Appl. Genet., 2007, 114: 525-537 CrossRef
  113. Liu L., Luo Q., Li H., Li B., Li Z., Zheng Q. Physical mapping of the blue-grained gene from Thinopyrum ponticum chromosome 4Ag and development of blue-grain-related molecular markers and a FISH probe based on SLAF-seq technology. Theor. Appl. Genet., 2018, 131(11): 2359-2370 CrossRef
  114. Wang R. Diploid perennial intergeneric hybrids in the tribe Triticeae. III. Hybrids among Secale montanum, Pseudoroegneria spicata, and Agropyron mongolicum. Genome, 1987, 29(1): 80-84 CrossRef
  115. Qin L., Liang Y., Yang D., Xia G., Liu S. Characterisation of low molecular weight glutenin subunit genes from Pseudoroegneria spicata and Pd. strigosa. J. Appl. Genet., 2015, 56(1): 27-35 CrossRef
  116. Yang Z.J., Zhang T., Liu C., Li G.R., Zhou J.P., Zhang Y., Ren Z.L. Identification of wheat–Dasypyrum breviaristatum addition lines with stripe rust resistance using C-banding and genomic in situ hybridization. In: The 11th International wheat genetics symposium proceedings. R. Appels, R. Eastwood, E. Lagudah, P. Langridge, M. Mackay, L. McIntyre, P. Sharp (eds.). Sydney University Press, Sydney, 2008: 1-2.
  117. Liu C., Qi L., Liu W., Zhao W., Wilson J., Friebe B., Gill B. Development of a set of compensating Triticum aestivum-Dasypyrum villosum Robertsonian translocation lines. Genome, 2011, 54(10): 836-844 CrossRef
  118. Li G.-R., Zhao J.-M., Li D.-H., Yang E.-N., Huang Y-.F., Liu C., Yang Z.-J. A novel wheat—Dasypyrum breviaristatum substitution line with stripe rust resistance. Cytogenet. Genome Res., 2014, 143(4): 280-287 CrossRef
  119. Wang H., Yu Z., Li B., Lang T., Li G., Yang Z. Characterization of new wheat—Dasypyrum breviaristatum introgression lines with superior gene(s) for spike length and stripe rust resistance. Cytogenet. Genome Res., 2018, 156: 117-125 CrossRef
  120. Wang H., Zhang H., Li B., Yu Z., Li G., Zhang J., Yang Z. Molecular cytogenetic characterization of new wheat—Dasypyrum breviaristatum introgression lines for improving grain quality of wheat. Front. Plant Sci., 2018, 9: 365 CrossRef
  121. Gradzielewska A. The genus Dasypyrum—part 2. Dasypyrum villosum —a wild species used in wheat improvement. Euphytica, 2006, 152(3): 441-454 CrossRef
  122. De Pace C., Vaccino P., Cionini P.G., Pasquini M., Bizzarri M., Qualset C.O. Dasypyrum. In: Wild crop relatives: genomic and breeding resources. Cereals. C. Kole (ed.). Springer, Berlin, 2011: 185-292 CrossRef
  123. Uslu E., Miller T.E., Rezanoor N.H., Nicholson P. Resistance of Dasyryrum villosum to the cereal eyespot pathogens Tapesia yallundae and Tapesia acuformis. Euphytica, 1998, 103: 203-209 CrossRef
  124. Bizzarri M., Pasquini M., Matere A., Sereni L., Vida G., Sepsi A., Molnar-Lang M., De Pace C. Dasypyrum villosum 6V chromosome as source of adult plant resistance to Puccinia triticina in wheat. Proc. the 53rd Italian society of agricultural genetics annual congress. Torino, Italy, 2009: 16-19.
  125. Zhao W., Qi L., Gao X., Zhang G., Dong J., Chen Q., Friebe B., Gill B. Development and characterization of two new Triticum aestivum-Dasypyrum villosum Robertsonian translocation lines T1DS.1V#3L and T1DL.1V#3S and their effect on grain quality. Euphytica, 2010, 175(3): 343-350 CrossRef
  126. Zhang R.Q., Hou F., Feng Y.G., Zhang W., Zhang M.Y., Chen P.D. Characterization of a Triticum aestivum-Dasypyrum villosum T2VS.2DL translocation line expressing a longer spike and more kernels traits. Theor. Appl. Genet., 2015, 128(12): 2415-2425 CrossRef
  127. Zhang R., Fan Y., Kong L., Wang Z., Wu J., Xing L., Cao A., Feng Y. Pm62, an adult-plant powdery mildew resistance gene introgressed from Dasypyrum villosum chromosome arm 2VL into wheat. Theor. Appl. Genet., 2018, 131(12): 2613-2620 CrossRef
  128. Huang D.H., Lin Z.S., Chen X., Zhang Z.Y., Chen C.C., Cheng S.H., Xin Z. Molecular characterization of a Triticum durum-Haynaldia villosa amphiploid and its derivatives for resistance to Gaeumannomyces graminis var. tritici. Agricultural Sciences in China, 2017, 6(5): 513-521 CrossRef
  129. Zhang J., Jiang Y., Wang Y., Guo Y., Long H., Deng G., Chen Q., Xuanet P. Molecular markers and cytogenetics to characterize a wheat-Dasypyrum villosum 3V (3D) substitution line conferring resistance to stripe rust. PLoS ONE, 2018, 13(8): e0202033 CrossRef
  130. Yildirim A., Jones S.S., Murray T.D. Mapping a gene conferring resistance to Pseudocercosporella herpotrichoides on chromosome 4V of Dasypyrum villosum in a wheat background. Genome, 1998, 41(1): 1-6 CrossRef
  131. Yildirim A., Jones S.S., Murray T.D., Line R.F. Evaluation of Dasypyrum villosum populations for resistance to cereal eyespot and stripe rust pathogens. Plant Dis., 2000; 84(1): 40-44 CrossRef
  132. Zhang Q., Li Q., Wang X., Wang H., Lang S., Wang Y, Wang S., Chen P., Liu D. Development and characterization of a Triticum aestivum-Haynaldia villosa translocation line T4VS.4DL conferring resistance to wheat spindle streak mosaic virus. Euphytica, 2005, 145(3): 317-332 CrossRef
  133. Zhang R.Q., Sun B.X., Chen J., Cao A.Z., Xing L.P., Feng Y.G., Lan C., Chen P. Pm55, a developmental-stage and tissue specific powdery mildew resistance gene introgressed from Dasypyrum villosum into common wheat. Theor. Appl. Genet., 2016, 129(1): 1975-1984 CrossRef
  134. Chen P.D., Qi L.L., Zhou B., Zhang S.Z., Liu D.J. Development and molecular cytogenetic analysis of wheat Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theor. Appl. Genet., 1995, 91(6-7): 1125-1128 CrossRef
  135. Pumphrey M., Jin Y., Rouse M., Qi L.L., Friebe B., Gill B.S. Resistance to stem rust race TTKS in wheat relative Haynaldia villosa. Proc. the 11th international wheat genetics symposium. R. Appels, E. Lagudah, P. Langridge, M. Mackay (eds.). University Press, Sydney, Australia, 2008: 151.
  136. Zhang R.Q., Feng Y.G., Li H.F., Yuan H.X., Dai J.L., Cao A.Z., Xing L., Li H. Cereal cyst nematode resistance gene CreV, effective against Heterodera filipjevi, transferred from chromosome 6VL of Dasypyrum villosum, to bread wheat. Mol. Breeding, 2016, 36(9): 122 CrossRef
  137. Li H., Jiang B., Wang J., Lu Y., Zhang J., Pan C., Yang X., Li X., Liu W., Li L. Mapping of novel powdery mildew resistance gene(s) from Agropyron cristatum chromosome 2P. Theor. Appl. Genet., 2016, 130(1): 109-121 CrossRef
  138. Jiang B., Liu T., Li H., Han H., Li L., Zhang J., Yang X., Zhou S., Li X., Liu W. Physical mapping of a novel locus conferring leaf rust resistance on the long arm of Agropyron cristatum chromosome 2P. Front. Plant Sci., 2018, 9: 817 CrossRef
  139. Luan Y., Wang X., Liu W., Li C., Zhang J., Gao A., Wang Y., Yang X., Li L. Production and identification of wheat—Agropyron cristatum 6P translocation lines. Planta, 2010, 232(2): 501-510 CrossRef
  140. Ye X., Lu Y., Liu W., Chen G., Han H., Zhang J., Yang X., Li X., Gao A., Li L. The effects of chromosome 6P on fertile tiller number of wheat as revealed in wheat—Agropyron cristatum chromosome 5A/6P translocation lines. Theor. Appl. Genet., 2015, 128(5): 797-811 CrossRef
  141. Song L., Lu Y., Zhang J., Pan C., Yang X., Li X., Liu W., Li L. Cytological and molecular analysis of wheat—Agropyron cristatum translocation lines with 6P chromosome fragments conferring superior agronomic traits in common wheat. Genome, 2016, 59(10): 840-850 CrossRef
  142. Ma H., Zhang J., Zhang J., Zhou S., Han H., Liu W., Yang X., Li X., Li L. Development of P genome-specific SNPs and their application in tracing Agropyron cristatum introgressions in common wheat. The Crop Journal, 2018, 7(2): 151-162 CrossRef
  143. Lu M., Lu Y., Li H., Pan C., Guo Y., Zhang J., Yang X., Li X., Liu W., Li L. Transferring desirable genes from Agropyron cristatum 7P chromosome into common wheat. PLoS ONE, 2016, 11(7): e0159577 CrossRef
  144. Liu Z.W., Wang R.R.C., Carman J.G. Hybrids and backcross progenies between wheat (Triticum aestivum L.) and apomictic Australian wheatgrass [Elymus rectisetus (Nees in Lehm.) A. Löve and Connor]: karyotypic and genomic analyses. Theor. Appl. Genet., 1994, 89(5): 599-605 CrossRef
  145. Oliver R.E., Cai X., Wang R.C., Xu S.S., Friesen T.L. Resistance to tan spot and Stagonospora nodorum blotch in wheat-alien species derivatives. Plant Dis., 2008, 92(1): 150-157 CrossRef
  146. Dou Q.W., Lei Y.T., Li X.M., Mott I.W., Wang R.R.C. Characterization of alien grass chromosomes in backcross derivatives of Triticum aestivum-Elymus rectisetus hybrids by using molecular markers and multi-color FISH/GISH. Genome, 2012, 55: 337-347 CrossRef
  147. Cainong J., Bockus W., Feng Y., Chen P., Qi L., Sehgal S., Danilova T., Koo D., Friebe B., Gill B. Chromosome engineering, mapping, and transferring of resistance to Fusarium head blight disease from Elymus tsukushiensis into wheat. Theor. Appl. Genet., 2015, 128(6): 1019-1027 CrossRef
  148. Zeng J., Cao W., Hucl P., Yang Y., Xue A., Chi D., Fedak G. Molecular cytogenetic analysis of wheat-Elymus repens introgression lines with resistance to Fusarium head blight. Genome, 2013, 56(1): 75-82 CrossRef
  149. Fedak G., Cao W., Wolfe D., Chi D., Xue A. Molecular characterization of Fusarium resistance from Elymus repens introgressed into bread wheat. Cytology and Genetics, 2017, 51(2): 130-133 CrossRef
  150. Friebe B., Wilson D.L., Raupp W.J., Gill B.S., Brown-Guedira G.L. Notice of release of KS04WGRC45 leaf rust-resistant hard white winter wheat germplasm. Annu. Wheat Newsl., 2005, 51: 188-189.
  151. Loshakova P.O., Fisenko A.V., Kalmykova L.P., Kuznetsova N.L., Upelniek V.P. Dostizheniya nauki i tekhniki APK, 2018: 32(9): 28-31 (in Russ.).
  152. Wilkinson M.D., King R., Grimaldi R. Sequence diversity and identification of novel puroindoline and grain softness protein alleles in Elymus, Agropyron and related species. Diversity, 2018, 10(4): 114 CrossRef
  153. Yu Z., Wang H., Xu Y., Li Y., Lang T., Yang Z., Li G. Characterization of chromosomal rearrangement in new wheat-Thinopyrum intermedium addition lines carrying Thinopyrum-specific grain hardness genes. Agronomy, 2019, 9(1): 18 CrossRef
  154. Kolchanov N.A., Kochetov A.V., Salina E.A., Pershina L.A. Khlestkina E.K., Shumny V. K. Status and prospects of marker-assisted and genomic plant breeding. Herald of the Russian Academy of Sciences, 2017, 87(2): 125-131 CrossRef
  155. Baral K., Coulman B., Biligetu B., Fu Y.-B. Genotyping-by-sequencing enhances genetic diversity analysis of crested wheatgrass [Agropyron cristatum (L.) Gaertn.]. Int. J. Mol. Sci., 2018, 19(9): 2587 CrossRef
  156. Liu L., Luo Q., Teng W., Li B., Li H., Li Y., Li Z., Zheng Q. Development of Thinopyrum ponticum-specific molecular markers and FISH probes based on SLAF-seq technology. Planta, 2018, 247(5): 1099-1108 CrossRef

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)