doi: 10.15389/agrobiology.2018.3.578eng

UDC 633.11:581.1:57.044:546.74:541.18

 

MORPHOPHYSIOLOGICAL FEATURES OF WHEAT (Triticum aestivum L.)
SEEDLINGS UPON EXPOSURE TO NICKEL NANOPARTICLES

P.N. Tsygvintsev, L.I. Goncharova, K.V. Manin, V.M. Rachkova

National Research Tomsk State University, 36, prosp. Lenina, Tomsk, 634050 Russia, e-mail baa888@mail.ru (✉ corresponding author), zotik.05@mail.ru, garden-tsu@mail.ru, suchkova.s.a@mail.ru, yu.morgalev@gmail.com

ORCID:
Zotikova A.P. orcid.org/0000-0001-6706-3821
Astafurova T.P. orcid.org/0000-0003-0668-774X
Burenina A.À. orcid.org/0000-0002-1225-5030
Suchkova S.À. orcid.org/0000-0001-7792-0372
Morgalev Yu.N. orcid.org/0000-0002-5646-8943

Received September 25, 2017

 

The intensive development of nanotechnologies determines the need for the investigation on the patterns of biological impact of technogenic nanomaterials. The analysis of the researches reveals a wide range of toxicity manifestations when nanocompounds affect plants, which depends on the physical properties of the nanoparticles (dimensions, shape, catalytic activity, concentration). The relevance of the studies on the concentration effects of nanoparticles is due to the insufficient knowledge of their interaction with the plant cell, and, consequently, the need to determine the dose-effect relationship for each class of nanoparticles and various bio-objects. This paper presents the results of a comprehensive study of the effect of nickel nanoparticles (NP Ni0, Δ50 = 5 nm in size) when used at different concentrations on growth, content of pigments, flavonoids and proline, photosynthesis and transpiration intensity of ten-day-aged wheat seedlings (Triticum aestivum L.). The calibrated seeds were pre-germinated for 2-3 days, up to the appearance of rootlets, in Petri dishes on filter paper impregnated with aquatic disperse systems of NP Ni0 in concentrations of 0.01, 0.1, 1 and 10 mg/l. In the control, the seeds were germinated on distilled water. The germinated seeds were put into 500-millilitre vegetative pots for further growing in the aquatic dispersed NP Ni0 systems of the above mentioned concentrations in the climate box until the 10-day age. Morphometric parameters assessed were the root length, the seedling height, the weight of the root and aboveground parts of the plants. To determine the content of photosynthetic pigments, flavonoids and proline, an average sample was collected from the leaves of 10 plants. The morphometric parameters under study depended on the doses of nickel nanoparticles in a disperse medium. NP Ni0 at low concentrations (0.01 and 0.1 mg/l) did not change or stimulated growth, whereas at larger doses (1 and 10 mg/l) they suppressed the growth of roots and aboveground part of seedlings considerably. The root length decreased 2 times at 1 mg/l NP Ni0 and 3 times at 10 mg/l NP Ni0, the wet weight was 1.9 and 2.7 times lower, respectively, and the height declined 1.3 and 1.9 times. The content of chlorophyll à and b at 0.01 mg/l NP Ni0 slightly increased and then decreased as the nanoparticle  concentration increased, but no clear dose dependence was revealed. The amount of carotenoids gradually decreased with increasing NP Ni0 concentration. The study of photosynthesis and transpiration showed a dose correlation of these indicators. NP Ni0 at low concentrations (0.01 and 0.1 mg/l) increased the intensity of photosynthesis and transpiration significantly, at the concentration of 1 mg/l did not affect these processes, and at 10 mg/l concentration insignificantly suppressed these parameters. The amount of flavonoids decreased with increasing NP Ni0 concentration; however, dose dependence was not observed. The lowest level of flavonoids, with a 75 % decrease, was at 0.1 mg/l NP Ni0, and at 10 mg/l NP Ni0 the amount of flavonoids decreased by 64 % as compared to the control. At the same time, the impact of nickel nanoparticles on wheat caused a rise in the level of proline from 22 to 130 %, with clear dose dependence on the nanoparticle concentration. Mass spectrometric studies revealed a significant accumulation of nanoparticles in plant organs, especially in the root system. In the roots of the experimental plants the nickel concentration was 50.89±1.67 μg/g per dry weight, in the control plants this reached 3.8±0.15 μg/g. In the above-ground parts of plants the nickel concentration was an order of magnitude lower, 14.20±2.38 mg/g per dry weight for the test plants and 0.87±0.025 mg/g per dry weight for the control plants. Thus, our findings revealed the morphophysiological peculiarities of wheat seedlings grown on water dispersed systems of NP Ni0 of 5 nm in size and showed a dependence of the majority of the studied parameters on NP Ni0 concentration.

Keywords: Triticum aestivum L., nickel nanoparticles, accumulation, photosynthetic pigments, photosynthesis, transpiration, flavonoids, proline.

 

Full article (Rus)

Full article (Eng)

 

REFERENCES

  1. Viswanath B., Kim S. Influence of nanotoxicity on human health and environment: The alternative strategies. In: Reviews of environmental contamination and toxicology. V. 242. P. de Voogt (ed.). Springer, Cham, 2016 CrossRef
  2. Chichiriccò G., Poma A. Penetration and toxicity of nanomaterials in higher plants. Nanomaterials, 2015, 5(2): 851-873 CrossRef
  3. Jiang J., Oberdörster G., Elder A., Gelein R., Mercer P., Biswas P.Does nanoparticle activity depend upon size and crystal phase? Nanotoxicology, 2008, 2(1): 33-42 CrossRef
  4. Altavilla C., Ciliberto E. Inorganic nanoparticles: synthesis, applications and perspectives — an overview. In: Inorganic nanopartikles: synthesis, applications and perspectives. C. Altavilla, E. Ciliberto (eds). CRC Press, Boca Raton, 2011: 1-17.
  5. Raikova A.P., Panichkin L.A., Raikova N.N. Materialy Mezhdunarodnoi nauchno-prakticheskoi konferentsii «Nanotekhnologii i informatsionnye tekhnologii — tekhnologii XXI veka» [Proc. Int. Conf. «Nanotechnologies and information technologies for the XIII century»]. Moscow, 2006: 108-111 (in Russ.).
  6. Lin D., Xing B. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ. Pollut., 2007, 150(2): 243-250 CrossRef
  7. Aslani F., Bagheri S., Julkapli N.M., Juraimi A.S., Hashemi F.S.G., Baghdadi A. Effects of engineered nanomaterials on plants growth: an overview. The Scientific World Journal, 2014, 2014: article ID 641759 CrossRef
  8. Josko I., Oleszczuk P. Phytotoxicity of nanoparticles — problems with bioassay choosing and sample preparation. Environ. Sci. Pollut. R., 2014, 21: 10215-10224 CrossRef
  9. Antisari L.V., Carbona S., Gatti A., Vionello G., Nannipieri P. Uptake and translocation of metals and nutrients in tomato grown in soil polluted with metal oxide (CeO2, Fe3O4, SnO2, TiO2 ) or metallic (Ag, Co, Ni) engineered nanoparticles. Environ. Sci. Pollut. R, 2015, 22(3): 1841-1853 CrossRef
  10. Korotkova A.M., Lebedev S.V., Kayumov F.G., Sizova E.A.Biological effects of wheat (Triticum vulgare L.) under the influence of metal nanoparticles (Fe, Cu, Ni) and their oxides (Fe3O4, CuO, NiO). Sel’skokhozyaistvennaya biologiya [Agricultural Biology], 2017, 52(1): 172-182. CrossRef
  11. Piccini D.F., Malavolta E. Effect of nickel on two common bean cultivars. J. Plant Nutr., 1992, 15: 2343-2350 CrossRef
  12. Shevyakova N.I., Il’ina E.N., Stetsenko L.A., Kyznetsov Vl.V. Nikel accumulation in rape shoots (Brassica napus L.) increased by putrescine. Int. J. Phytoremediat., 2011, 13: 345-356.
  13. Fel'dblyum V. «Nano» na styke nauk: nanoob"ekty, nanotekhnologii, nanobudushchee. Yaroslavl', 2013. Accessed http://narfu.ru/university/library/books/0706.pdf. Available June 12, 2017 (in Russ.).
  14. Rui H., Xing R., Xu Z., Hou Y., Goo S., Sun S. Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv. Mater., 2010, 22(25): 2729-2742 CrossRef
  15. Tee B.C.-K., Wang C., Allen R., Bao Z. An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nat. Nanotechnol., 2012, 7: 825-832 CrossRef
  16. Aleshin A.N., Shcherbakov I.P., Fedichkin F.S. Photosensitive field-effect transistor based on a composite film of polyvinylcarbazole with nickel nanoparticles. Physics of the Solid State, 2012, 54: 1693-1698 CrossRef
  17. Osipova I.V., Vnukova N.G., Glushchenko G.A., Krylov A.S., Tomashevich E.V., Zharkov S.M., Churilov G.N. Nickel-containing carbon nanotubes and nanoparticles prepared in a high-frequency arc plasma. Physics of the Solid State, 2009, 51: 1972-1975 CrossRef
  18. Morgalev Yu.N., Khoch N.S., Morgaleva T.G. Nanotekhnika, 2010, 4: 74-79 (in Russ.).
  19. Seregin I.V., Kozhevnikova A.D. Fiziologiya rastenii, 2006, 53: 285-308 (in Russ.).
  20. Demchenko N.P., Kalimova I.B. Fiziologiya rastenii, 2008, 55: 874-885 (in Russ.).
  21. Svetlichnyi V.A., Izaak T.I., Babkina O.V., Shabalina A.V. Izvestiya vysshikh uchebnykh zavedenii. Fizika, 2009, 12(2): 110-115 (in Russ.).
  22. Metodika opredeleniya mikroelementov v diagnostiruyushchikh biosubstratakh atomnoi spektrometriei s induktivno svyazannoi argonovoi plazmoi. Metodicheskie rekomendatsii [ICP-MS analysis of microelements in biosubstrates — recommendations]. Moscow, 2003 (in Russ.).
  23. Biokhimicheskie metody v fiziologii rastenii /Pod redaktsiei O.A. Pavlinovoi [Biolcjemical methods in plant physiology. O.A. Pavlinova (ed.)]. Moscow, 1971 (in Russ.).
  24. Gosudarstvennaya farmakopeya KHI. Vypusk 2 [The State Pharmacopoeia of the Russian Federation. Iss. 2]. Moscow, 1990 (in Russ.).
  25. Bates L.S., Waldren R.P., Teare I.D. Rapid determination of free proline for water-stress studies. Plant Soil, 1973, 39: 205-207.
  26. Titov A.F., Talanova V.V., Kaznina N.M., Laidinen G.F. Ustoichivost' rastenii k tyazhelym metallam [Plant tolerance to haevy matals]. Petrozavodsk, 2007 (in Russ.).
  27. Wilkins D.A. The measurement of tolerance to edaphic factors by means of root growth. New Phytol., 1978, 86: 623-633.
  28. Wagner G.J. Accumulation of cadmium in crop plants and consequences to human health. Adv. Agron., 1993, 51: 173-212.
  29. Grant C.A., Buckley W.T., Bailey L.D., Selles F. Cadmium accumulation in crops. Can. J. Plant Sci., 1998, 78: 1-17.
  30. Astafurova T.P., Morgalev Yu.N., Borovikova G.V., Zotikova A.P., Verkhoturova G.S., Zaitseva T.A., Postovalova V.M., Morgaleva T.A. Fiziologiya rastenii i genetika, 2013, 45(6): 544-549 (in Russ.).
  31. Zhirov V.K., Khaitbaev A.Kh., Govorova A.F., Gontar' O.B. Vestnik MGTU, 2006, 5: 725-728 (in Russ.).
  32. Mokronosov A.T. Fiziologiya rastenii, 1983, 30(5): 868-880 (in Russ.).
  33. Makarenko O.A., Levitskii A.P. Fiziologiya i biokhimiya kul'turnykh rastenii, 2013, 45(2): 100-112 (in Russ.).
  34. Kuznetsov V.V., Shevyakova N.I. Fiziologiya rastenii, 1999, 46(2): 321-336 (in Russ.).
  35. Liang X., Zhang L., Natarajan S.K., Becker D.F. Proline mechanisms of stress survival. Antioxid. Redox Signal, 2013, 19(9): 998-1011 CrossRef
  36. Corral-Diaz B., Peralta-Videa J.R., Alvarez-Parrilla E., Rodrigo-García J., Morales M.I., Osuna-Avila P., Niu G., Hernandez-Viezcas J.A., Gardea-Torresdey J.L. Cerium oxide nanoparticles alter the antioxidant capacity but do not impact tuber ionome in Raphanus sativus (L). Plant Physiol. Bioch., 2014, 84: 277-285 CrossRef
  37. Ghanati F., Bakhtiarian S. Effect of methyl jasmonate and silver nanoparticles on production of secondary metabolites by Calendula officinalis L. (Asteraceae). Trop. J. Pharm. Res., 2014, 13(11): 1783-1789 CrossRef
  38. Krishnaraj C., Jagan E.G., Ramachandran R., Abirami S.M., Mohan N., Kalaichelvan P.T. Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. plant growth metabolism. Process Biochem., 2012, 47(4): 651-658 CrossRef

back