doi: 10.15389/agrobiology.2018.3.521eng

UDC 635.655:581.143.6:58.085

Acknowledgments:
Supported financially by a grant from the President of the Russian Federation for the state support of young Russian scientists in the framework of the project MK-9241.2016.11

 

NDIRECT SHOOT ORGANOGENESIS OF SOYBEAN Glycine max (L.) Merr.
FROM STEM SEGMENTS AND USE OF THE EXPLANTS FOR Agrobacterium-MEDIATED TRANSFORMATION

N.V. Varlamova1, M.A. Rodionova1, L.N. Efremova1, P.N. Kharchenko1, D.A. Vysotskii1, M.R. Khaliluev1,2

1All-Russian Research Institute of Agricultural Biotechnology, Federal Agency of Scientific Organizations, 42, ul. Timiryazevskaya, Moscow, 127550 Russia, e-mail marat131084@rambler.ru (✉ corresponding author), nv_varlamo-va@rambler.ru, marrod54@gmail.com, laraefremova@mail.ru, kharchenko@iab.ac.ru, den_vis@mail.ru;
2Timiryazev Russian State Agrarian University—Moscow Agrarian Academy, 49, ul. Timiryazevskaya, Moscow, 127550 Russia

ORCID:
Varlamova N.V. orcid.org/0000-0003-2339-0120
Kharchenko P.N. orcid.org/0000-0001-5074-0531
Rodionova M.A. orcid.org/0000-0003-1540-5644
Vysotskii D.A. orcid.org/0000-0003-2650-1236
Efremova L.N. orcid.org/0000-0002-1579-438X
Khaliluev M.R. orcid.org/0000-0001-7371-8900

Received December 11, 2017

 

Soybean Glycine max (L.) Merr. is an important oil, food and fodder crop for human and animals fodder. Currently, soybean lines genetically modified for improved resistance to herbicides and pests and for reduced linolenic acid content are widely grown. More than 85 % of transgenic soybean plants are obtained using Agrobacterium-mediated transformation method. Developed Agrobacterium-mediated protocols are based on somatic embryogenesis and direct or indirect shoot organogenesis. Cotyledons, cotyledonary nodes, hypocotyl and epicotyl segments, immature or mature embryos serve as explants. Despite the large number of Agrobacterium-mediated protocols, stable transformation of soybeans is still not a routine procedure because it depends on the genotype. Surprisingly, the data on the use of soybean stem segments in genetic transformation is practically absent, although stem segments widely and efficiently serve as explants in the production of most transgenic monocotyledonous plants. Thus, the purpose of the study was to develop a protocol for shoot organogenesis from stem segments of soybean and their application as explants for the production of transgenic plants by Agrobacterium-mediated transformation. Stem segments of aseptic soybean seedlings of breeding lines 1476 and 1477 were used for callus induction and shoot organogenesis. The explants were cultured on four various MS-based growing media which differed in 6-benzylaminopurine (BA) concentrations (0.5 and 1.0 mg/l) in combination with i) 0.1 mg/l indole-3-acetic acid (IAA), or ii) 0.1 mg/l indole-3-acetic acid (IAA) and 0.5 mg/l 2,4-dichlorophenoxyacetic acid (2.4-D). It was shown that the studied soybeans genotypes differ significantly in morphogenetic ability. Out experiments confirmed that the addition of 2.4-D resulted in inhibition of shoot organogenesis in the both genotypes. It was found that 1 mg/l BA in combination with 0.1 mg/l IAA are the best growth regulators providing the highest frequency of indirect shoot organogenesis. As a result, an effective protocol of indirect shoot organogenesis from soybean stem segments of line 1476 seedlings was developed which ensures more than 50 % frequency of organogenesis. This protocol was applied in genetic transformation of soybean line 1476 by Agrobacterium tumefaciens strain AGL0 carrying the plasmid pCambia1381Z-pro-SmAMP1-771. By gradual selection on the induction medium supplemented with hygromycin B (1-10 mg/l), 8 independent lines of putative primary transformants were selected. PCR analysis confirmed the presence of the selective (hpt) and marker (uidA) genes in 4 independent transgenic lines. The transformation efficiencies calculated based on the results of PCR analysis was 2.0 %. These results indicate the successful involvement of stem segments as explants for genetic transformation of soybean.

Keywords: soybean, Glycine max (L.) Merr., in vitroculture, shoot organogenesis, Agrobacterium-mediated transformation.

 

Full article (Rus)

Full article (Eng)

 

REFERENCES

  1. Glukhikh M.A. Tekhnologii proizvodstva produktsii rastenievodstva v Zaural'e i Zapadnoi Sibiri [Technologies of commercial plant growing in the Trans-Urals and Western Siberia]. Moscow, 2015 (in Russ.).
  2. Global status of commercialized biotech/GM crops: 2016. ISAAA Brief ¹. 52. ISAAA, Ithaca, NY, 2016.
  3. Christou P., McCabe D.E., Swain W.F. Stable transformation of soybean callus by DNA-coated gold particles. Plant Physiol., 1988, 87(3): 671-674 CrossRef
  4. Hinchee M.A., Connor-Ward D.V., Newell C.A., McDonell R.E., Sato S.J., Gasser C.S., Fishhoff D.A., Re D.B., Fraley R.T., Horsch R.B. Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer. Nature Biotechnol., 1988, 6(8): 915-922 CrossRef
  5. Arun M., Chinnathambi A., Subramanyam K., Karthik S., Sivanandhan G., Theboral J., Alharbi S.A., Kim C.K., Ganapathi A. Involvement of exogenous polyamines enhances regeneration and Agrobacterium-mediated genetic transformation in half-seeds of soybean. 3 Biotech, 2016, 6(2): 148 CrossRef
  6. Wang G., Xu Y. Hypocotyl-based Agrobacterium-mediated transformation of soybean (Glycine max) and application for RNA interference. Plant Cell Rep., 2008, 27(7): 1177-1184 CrossRef
  7. Efremova O.S., Dega L.A., Nodel'man E.K., Shkryl' Yu.N. Maslichnye kul'tury. Nauchno-tekhnicheskii byulleten' Vserossiiskogo nauchno-issledovatel'skogo instituta maslichnykh kul'tur, 2016, 4(168): 25-30 (in Russ.).
  8. Hong H.P., Zhang H., Olhoft P., Hill S., Wiley H., Toren E., Hillebrand H., Jones T., Cheng M. Organogenic callus as the target for plant regeneration and transformation via Agrobacterium in soybean (Glycine max (L.) Merr.). In Vitro Cell. Dev. Biol.-Plant, 2007, 43(6): 558-568 CrossRef
  9. Finer J.J. Generation of transgenic soybean (Glycine max) via particle bombardment of embryogenic cultures. Curr. Protoc. Plant Biol., 2016, 1: 592-603 CrossRef
  10. Dhir S.K., Dhir S., Sturtevant A.P., Widholm J.M. Regeneration of transformed shoots from electroporated soybean (Glycine max (L.) Merr.) protoplasts. Plant Cell Reports, 1991, 10(2): 97-101 CrossRef
  11. Shou H., Palmer R.G., Wang K. Irreproducibility of the soybean pollen-tube pathway transformation procedure. Plant Mol. Biol. Rep., 2002, 20(4): 325-334 CrossRef
  12. Kershanskaya O.I. Geneticheskaya inzheneriya soi dlya uluchsheniya ustoichivosti k abioticheskim stressam. Eurasian Journal of Applied Biotechnology, 2013, 1: 34-40.
  13. Butenko R.G. Biologiya kletok vysshikh rastenii in vitro i biotekhnologii na ikh osnove [Cell biology of higher plants in vitro and cell based biotechnology]. Moscow, 1999 (in Russ.).
  14. Franklin G., Carpenter L., Davis E., Reddy C.S., Al-Abed D., Abou Alaiwi W., Parani M., Smith B., Sairam R.V. Factors influencing regeneration of soybean from mature and immature cotyledons. Plant Growth Regul., 2004, 43(1): 73-79 CrossRef
  15. Raza G., Singh M.B., Bhalla P.L. In vitro plant regeneration from commercial cultivars of soybean. BioMed Research International, 2017, 2017: Article ID 7379693 CrossRef
  16. Zhang C., Wu X., Zhang B., Chen Q., Liu M., Xin D., Qi Z., Li S., Ma Y., Wang L., Jin Y., Li W., Wu X., Su A.-Y. Functional analysis of the GmESR1 gene associated with soybean regeneration. PLoS ONE, 2017, 12(4): e0175656 CrossRef
  17. Tomlin E.S., Branch S.R., Chamberlain D., Gabe H., Wright M.S., Stewart C.N. Screening of soybean, Glycine max (L.) Merrill, lines for somatic embryo induction and maturation capability from immature cotyledons. In Vitro Cell. Dev. Biol.-Plant, 2002, 38(6): 543-548 CrossRef
  18. Hiraga S., Minakawa H., Takahashi K., Takahashi R., Hajika M., Harada K., Ohtsubo N. Evaluation of somatic embryogenesis from immature cotyledons of Japanese soybean cultivars. Plant Biotechnology, 2007, 24(4): 435-440 CrossRef
  19. Ko T.-S., Korban S.S. Enhancing the frequency of somatic embryogenesis following Agrobacterium-mediated transformation of immature cotyledons of soybean [Glycine max (L.) Merrill.]. In Vitro Cell. Dev. Biol.-Plant, 2004, 40(6): 552-558 CrossRef
  20. Olhoft P., Flagel L., Donovan C., Somers D. Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method. Planta, 2003, 216(5): 723-735 CrossRef
  21. Wright M.S., Williams M.W., Pierson, P.E., Carnes M.G. Initiation and propagation of Glycine max L. Merr.: Plants from tissue-cultured epicotyls. Plant Cell Tiss. Organ Cult., 1987, 8(1): 83-90 CrossRef
  22. Murashige T., Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiologia Plantarum, 1962, 15: 473-497 CrossRef
  23. Vysotskii D.A., Strel'nikova S.R., Efremova L.N., Vetchinkina E.M., Babakov A.V., Komakhin R.A. Fiziologiya rastenii, 2016, 63(5): 705-715 CrossRef (in Russ.).
  24. Weigel D., Glazebrook J. Transformation of Agrobacterium using electroporation. Cold Spring Harb. Protoc., 2006, 7: pdb.prot4665 CrossRef
  25. Bertani G. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J. Bacteriol., 1951, 62: 293-300.
  26. Komakhin R.A., Komakhina V.V., Milyukova N.A., Goldenkova-Pavlova I.V., Fadina O.A., Zhuchenko A.A. Transgenic tomato plants expressing recA and NLS-recA-licBM3 genes as a model for studying meiotic recombination. Russ. J. Genet., 2010, 46(12): 1635-1644 CrossRef
  27. Enikeev A.G., Kopytina T.V., Maximova L.A., Nurminskaya Yu.V., Shafikova T.N., Rusaleva T.M., Fedoseeva I.V., Shvetsov S.G. Physiological consequences of genetic transformation: result of target gene expression or stress reaction? Journal of Stress Physiology & Biochemistry, 2015, 11(2): 64-72.
  28. Cassells A.C., Curry R.F. Oxidative stress and physiological, epigenetic and genetic variability in plant tissue culture: implications for micropropagators and genetic engineers. Plant Cell Tiss. Organ Cult., 2001, 64(2-3): 145-157 CrossRef
  29. Khaliluev M.R., Kharchenko P.N., Dolgov S.V. Izvestiya TSKHA, 2010, 6: 75-83 (in Russ.).
  30. Ushchapovskii I.V., Lemesh V.V., Bogdanova M.V., Guzenko E.V. Particularity of breeding and perspectives on the use of molecular genetic methods in flax (Linum usitatissimum L.) genetics and breeding research (review). Sel’skokhozyaistvennaya biologiya [Agricultural Biology], 2016, 51(5): 602-616 CrossRef

back