doi: 10.15389/agrobiology.2018.3.499eng

UDC 633.11:577.21

The wheat-wheatgrass hybrids by courtesy of Dr V.I. Belov and Dr Upelniek (Tsitsin State Botanic Garden RAS, Moscow), and the bread wheat lines with added Thinopyrum elongatum chromosomes (created by Dr Jan Dvorak, UC Davis, USA) by courtesy of Dr J. Raupp (Kansas State University, USA)
Supported financially by Russian Science Foundation, Agreement 16-16-00097 of January 27, 2016



A.A. Pochtovyy1, 2, P.Yu. Kroupin1, 3, M.G. Divashuk1, 3,
A.A. Kocheshkova1, P.A. Sokolov1, G.I. Karlov1, 3

1Timiryazev Russian State Agrarian University—Moscow Agrarian Academy, Center for Molecular Biotechnology, 49, ul. Timiryazevskaya, Moscow, 127550 Russia, e-mail,,,,;
2All-Russian Research Institute of Agricultural Biotechnology, Federal Agency of Scientific Organizations, 42, ul. Timiryazevskaya, Moscow, 127550 Russia;
3Lomonosov Moscow State University, Faculty of Biology, 1-12 Leninskie Gory, Moscow, 119991 Russia, e-mail (✉ corresponding author)

Pochtovyy A.A.
Kroupin P.Yu.
Divashuk M.G.
Kocheshkova A.A.
Sokolov P.A.
Karlov G.I.

Received October 31, 2017


The DREB gene encodes the transcription factor DREB involved in the response of the plant to drought, salinity and heat. The DREB transcription factors induce the expression of multiple genes linked by signal transmission, abscisic acid-dependent and independent, in response to abiotic stress. Many wild species have evolved under extreme environmental conditions (drought, salinity), so they can serve as sources of new genetic variants of DREB in breeding wheat for stress resistance. The study of DREB orthologous genes in wild relatives of wheat will permit to expand the set of genes in its breeding improvement using wide hybridization, and the design and application of molecular markers will facilitate transfer of these genes into a genome of bread wheat. Among the diversity of genes encoding DREB proteins, DREB1 is of the greatest interest due to its involvement in control of plant resistance to various abiotic factors, such as drought, salinity, low temperatures. We were the first to study the DREB1 orthologs in members of the genera Thinopyrum, Dasypyrum and Pseudoroegneria. Using primers designed on the basis of DREB1 conserved regions we amplified fragments of the DREB1 orthologs in Thinopyrum intermedium, Th. ponticum, Th. bessarabicum, Dasypyrum villosum, Pseudoroegneria spicata, and P. stipifolia. The obtained PCR products were cloned and sequenced. As a result, 30 unique sequences were shown to be highly homologous (92-98 %) to the TaDREB genes of bread wheat. Between the sequences, we identified multiple single-nucleotide polymorphisms (SNPs) and several large insertions/deletions. The resulting DNA sequences were translated in silico into hypothetical amino acid sequences. All nucleotide sequences found by us are capable of encoding a complete protein that has a DNA-binding domain specific for DREB AP2. Comparison of the amino acid sequences of the AP2 DNA-binding domain in the studied samples showed the presence of polymorphisms for individual amino acids. In all hypothetical amino acid sequences, except for one the sequence described, amino acids conserved for the DREB AP2-domain of cereals were found. We developed the CAPS marker P18_FokI, which in most cases can differentiate the DREB1 orthologs between wheat and wild relatives due to the presence of polymorphisms in the restriction sites, the fragment amplified from the genome of bread wheat has a size of about 570 bp. A DREB1 ortholog was localized in the homeological group 3 of Th. elongatum (3Je) using P18_FokI and a series of addition bread wheat lines with Th. elongatum chromosomes. Analysis of 10 wheat-wheatgrass hybrids revealed the presence of both TaDREB bread wheat and the DREB1 ortholog in all analyzed accessions. In this case, the wheat-type fragment was absent in bread wheat with a substituted chromosome 6J (6D), which also serves as a proof of localization of the DREB1 ortholog on the chromosome of homeological group 3. Thus, the CAPS marker P18_FokI developed by us helps to effectively transfer the DREB1 gene from the wild cereals to the genome of bread wheat, so that we can study the effect of the alien DREB1 gene on the resistance of bread wheat to drought, salinity, low temperatures, and, farther, to create valuable breeding forms using MAS.

Keywords: bread wheat, Triticum, Thinopyrum, Pseudoroegneria, Dasypyrum, resistance genes, orthologous genes, drought, salinity, DREB1, DREB, TADREB1, polymerase chain reaction, molecular markers, sequencing.


Full article (Rus)

Supplementary 1 (Rus)

Supplementary 2 (Rus)

Supplementary 3 (Rus)


Full article (Eng)

Supplementary 1 (Eng)

Supplementary 2 (Eng)

Supplementary 3 (Eng)



  1. Chen W.J., Zhu T. Networks of transcription factors with roles in environmental stress response. Trends Plant Sci., 2004, 9(12): 591-596 CrossRef
  2. Xu Z.S., Chen M., Li L.C., Ma Y.Z. Functions of the ERF transcription factor family in plants. Botany, 2008, 86(9): 969-977 CrossRef
  3. Wang J.W., Yang F.P., Chen X.Q., Liang R.Q., Zhang L.Q., Geng D.M., Zhang X.D., Song Y.Z., Zhang G.S. Induced expression of DREB transcriptional factor and study on its physiological effects of drought tolerance in transgenic wheat. Acta Genetica Sinica, 2006, 33(5): 468-476 CrossRef
  4. Agarwal P.K., Agarwal P., Reddy M.K., Sopory S.K. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep., 2006, 25(12): 1263-1274 CrossRef
  5. Xu Z.S., Ni Z.Y., Li Z.Y., Li L.C., Chen M., Gao D.Y., Yu X.D., Liu P., Ma Y.Z. Isolation and functional characterization of HvDREB1 — a gene encoding a dehydration-responsive element binding protein in Hordeum vulgare. J. Plant Res., 2009, 122(1): 121-130 CrossRef
  6. Yamaguchi-Shinozaki K., Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. The Plant Cell Online, 1994, 6(2): 251-264 CrossRef
  7. Magnani E., Sjölander K., Hake S. From endonucleases to transcription factors: evolution of the AP2 DNA binding domain in plants. Plant Cell, 2004, 16(9): 2265-2277 CrossRef
  8. Liu Y., Zhao T.J., Liu J.M., Liu W.Q., Liu Q., Yan Y.B., Zhou H.M. The conserved Ala37 in the ERF/AP2 domain is essential for binding with the DRE element and the GCC box. FEBS Lett., 2006, 580(5): 1303-1308 CrossRef
  9. Lata C., Prasad M. Role of DREBs in regulation of abiotic stress responses in plants. J. Exp. Bot., 2011, 62(14): 4731-4748 CrossRef
  10. Stockinger E.J., Gilmour S.J., Thomashow M.F. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. PNAS USA, 1997, 94(3): 1035-1040 CrossRef
  11. Wang S.X., Wang Z.Y., Peng Y.K. Dehydration responsive element binding (DREB) transcription activator and its function in plant tolerance to environmental stresses. Plant Physiology Communications, 2004, 40(1): 7-13.
  12. Liu Q., Kasuga M., Sakuma Y., Abe H., Miura S., Yamaguchi-Shinozaki K., Shinozaki K. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. The Plant Cell Online, 1998, 10(8): 1391-1406 CrossRef
  13. Akhtar M., Jaiswal A., Taj G., Jaiswal J.P., Qureshi M.I., Singh N.K. DREB1/CBF transcription factors: their structure, function and role in abiotic stress tolerance in plants. J. Genet., 2012, 91(3): 385-395 CrossRef
  14. Kidokoro S., Watanabe K., Ohori T., Moriwaki T., Maruyama K., Mizoi J., Myint P.S.H.N., Fujita Y., Sekita S., Shinozaki K, Yamaguchi-Shinozaki K. Soybean DREB1/CBF-type transcription factors function in heat and drought as well as cold stress-responsive gene expression. Plant J., 2015, 81(3): 505-518 CrossRef
  15. Shen Y.G., Zhang W.K., He S.J., Zhang J.S., Liu Q., Chen S.Y. An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress. Theor. Appl. Genet., 2003, 106(5): 923-930 CrossRef
  16. Khan M.S. The role of DREB transcription factors in abiotic stress tolerance of plants. Biotechnol. Biotec. Eq., 2011, 25(3): 2433-2442 CrossRef
  17. Wei B., Jing R., Wang C., Chen J., Mao X., Chang X., Jia J. Dreb1 genes in wheat (Triticum aestivum L.): development of functional markers and gene mapping based on SNPs. Mol. Breeding, 2009, 23(1): 13-22 CrossRef
  18. Chen J., Jing R., Yuan H., Wei B., Chang X. Single nucleotide polymorphism of TaDREB1 gene in wheat germplasm. Scientia Agricultura Sinica, 2005, 38(12): 2387-2394.
  19. Mondini L., Nachit M., Porceddu E., Pagnotta M.A. Identification of SNP mutations in DREB1, HKT1, and WRKY1 genes involved in drought and salt stress tolerance in durum wheat (Triticum turgidum L. var durum). OMICS: A Journal of Integrative Biology, 2012, 16(4): 178-187 CrossRef
  20. Suneja Y. Physio-biochemical responses and allelic diversity for water deficit tolerance related traits in Aegilops tauschii and Triticum dicoccoides. Ph.D. Thesis. Ludhiana, India, 2014.
  21. Xianjun P., Xingyong M., Weihong F., Man S., Liqin C., Alam I., Lee B.H., Dongmei Q., Shihua S., Gongshe L. Improved drought and salt tolerance of Arabidopsis thaliana by transgenic expression of a novel DREB gene from Leymus chinensis. Plant Cell Rep., 2011, 30(8): 1493-502 CrossRef
  22. Pochtovyi A.A., Divashuk M.G., Karlov G.I. Materialy XV Molodezhnoi nauchnoi konferentsii «Biotekhnologiya v rastenievodstve, zhivotnovodstve i veterinarii» [Proc. XV Conf. of young scientists «Biotechnology in plant growing, cattle breeding and vwtwrinary medicine»]. Moscow, 2015: 35-36 (in Russ.).
  23. James V.A., Neibaur I., Altpeter F. Stress inducible expression of the DREB1A transcription factor from xeric, Hordeum spontaneum L. in turf and forage grass (Paspalum notatum Flugge) enhances abiotic stress tolerance. Transgenic Res., 2008, 17(1): 93-104 CrossRef
  24. Dubouzet J.G., Sakuma Y., Ito Y., Kasuga M., Dubouzet E.G., Miura S., Seki M., Shinozaki K., Yamaguchi-Shinozaki K. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high- salt- and cold-responsive gene expression. Plant J., 2003, 33(4): 751-763 CrossRef
  25. Bhatnagar-Mathur P., Devi M.J., Reddy D.S., Lavanya M., Vadez V., Serraj R., Yamaguchi-Shinozaki K., Sharma K.K. Stress inducible expression of At DREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions. Plant Cell, 2007, 26: 2071-2082 CrossRef
  26. Gao S.Q., Chen M., Xia L.Q., Xiu H.J., Xu Z.S., Li L.C., Zhao C.P., Cheng X.G., Ma Y.Z. A cotton (Gossypium hirsutum) DREB-binding transcription factor gene, GhDREB, confers enhanced tolerance to drought, high salt, and freezing stresses in transgenic wheat. Plant Cell Rep., 2009, 28(2): 301-311 CrossRef
  27. Wang X., Chen X., Liu Y., Gao H., Wang Z., Sun G. CkDREB gene in Caragana korshinskii is involved in the regulation of stress response to multiple abiotic stresses as an AP2/EREBP transcription factor. Mol. Biol. Rep., 2011, 38(4): 2801-2811 CrossRef
  28. Wang R.R.-C., Jensen K.B. Wheatgrass and wildrye grasses (Triticeae). Genetic Resources, Chromosome Engineering, and Crop Improvement, 2009, 5: 48-49.
  29. Wang R.R.C. Agropyron and psathyrostachys. In: Wild crop relatives: genomic and breeding resources. Springer, Berlin, Heidelberg, 2011: 77-108 CrossRef
  30. Chen Q. Detection of alien chromatin introgression from Thinopyrum into wheat using S genomic DNA as a probe — a landmark approach for Thinopyrum genome research. Cytogenet. Genome Res., 2005, 109(1-3): 350-359 CrossRef
  31. Tabaei-Aghdaei S.R., Harrison P., Pearce R.S. Expression of dehydration- stress-related genes in the crowns of wheatgrass species [Lophopyrum elongatum (Host) A. Love and Agropyron desertorum (Fisch. ex Link.) Schult.] having contrasting acclimation to salt, cold and drought. Plant Cell Environ., 2000, 23(6): 561-571 CrossRef
  32. Krupin P.Yu., Divashuk M.G., Bazhenov M.S., Gritsenko L.A., Tarakanov I.G., Upelniek V.P., Belov V.I., Pochtovyi A.A., Starikova E.V., Kkhuat Tkhi Mai L., Klimushina M.V., Davydova A.N., Karlov G.I. Salt tolerance polymorfism in seadlings of wheat-wheatgrass hybrids. Sel’skokhozyaistvennaya biologiya [Agricultural Biology], 2013, 5: 44-53 CrossRef (in Russ.).
  33. Kocheshkova A.A., Kroupin P.Yu., Bazhenov M.S., Karlov G.I., Pochtovyy A.A., Upelniek V.P., Belov V.I., Divashuk M.G. Pre-harvest sprouting resistance and haplotype variation of ThVp-1 gene in the collection of wheat-wheatgrass hybrids. PLoS ONE, 2017, 12(11): e0188049 CrossRef
  34. Krupin P.Yu., Divashuk M.G., Belov V.I., Zhemchuzhina A.I., Kovalenko E.D., Upelniek V.P., Karlov G.I. Investigation of intermediary wheat-agropyron hybrids on resistance to leaf rust. Sel’skokhozyaistvennaya biologiya [Agricultural Biology], 2013, 1: 68-73 CrossRef
  35. Salina E.A., Adonina I.G., Badaeva E.D., Kroupin P.Yu., Stasyuk A.I., Leonova I.N., Shishkina A.A., Divashuk M.G., Starikova E.V., Khuat T.M.L., Syukov V.V., Karlov G.I. A Thinopyrum intermedium chromosome in bread wheat cultivars as a source of genes conferring resistance to fungal diseases. Euphytica, 2015, 204(1): 91-101 CrossRef
  36. Sibikeev S.N., Badaeva E.D., Gul'tyaeva E.I., Druzhin A.E., Shishkina A.A., Dragovich A.Yu., Krupin P.Yu., Karlov G.I., Kkhuat T.M., Divashuk M.G. Genetika, 2017, 53(3): 298-309 (in Russ.).
  37. Liu W., Danilova T.V., Rouse M.N., Bowden R.L., Friebe B., Gill B.S., Pumphrey M.O. Development and characterization of a compensating wheat — Thinopyrum intermedium Robertsonian translocation with Sr44 resistance to stem rust (Ug99). Theor. Appl. Genet., 2013, 126(5): 1167-1177 CrossRef
  38. Shen X., Ohm H. Fusarium head blight resistance derived from Lophopyrum elongatum chromosome 7E and its augmentation with Fhb1 in wheat. Plant Breeding, 2006, 125(5): 424-429 CrossRef
  39. Friebe B., Qi L.L., Wilson D.L., Chang Z.J., Seifers D.L., Martin T.J., Fritz A.K., Gill B.S Wheat—Thinopyrum intermedium recombinants resistant to wheat streak mosaic virus and Triticum mosaic virus. Crop Sci., 2009, 49(4): 1221-1226 CrossRef
  40. Chen Q., Conner R.L., Laroche A., Ahmad F. Molecular cytogenetic evidence for a high level of chromosome pairing among different genomes in Triticum aestivum—Thinopyrum intermedium hybrids. Theor. Appl. Genet., 2001, 102(6): 847-852 CrossRef
  41. De Pace C., Vaccino P., Cionini P.G., Pasquini M., Bizzarri M., Qualset C.O. Dasypyrum. In: Wild crop relatives: genomic and breeding resources. Springer, Berlin, Heidelberg, 2011: 185-292 CrossRef
  42. Ceoloni C., Kuzmanovi? L., Gennaro A., Forte P., Giorgi D., Grossi M.R., Bitti A. Genomes, chromosomes and genes of the wheatgrass genus Thinopyrum: the value of their transfer into wheat for gains in cytogenomic knowledge and sustainable breeding. In: Genomics of Plant Genetic Resources. R. Tuberosa, A. Graner, E. Frison (eds.). Springer, Dordrecht, 2014: 333-358 CrossRef
  43. Divashuk M.G., Khuat T.M., Kroupin P.Y., Kirov I.V., Romanov D.V., Kiseleva A.V., Khrustaleva L.I., Alexeev D.G., Zelenin A.S., Klimushina M.V., Razumova O.V., Karlov G.I. Variation in copy number of Ty3/gypsy centromeric retrotransposons in the genomes of Thinopyrum intermedium and its diploid progenitors. PLoS ONE, 2016, 11(4): e0154241 CrossRef
  44. Bernatzky R., Tanksley S.D. Toward a saturated linkage map in tomato based on isozyme and random cDNA sequences. Genetics, 1986, 112(1): 887-898.
  45. Goujon M., McWilliam H., Li W., Valentin F., Squizzato S., Paern J., Lopez R. A new bioinformatics analysis tools framework at EMBL—EBI. Nucleic Acids Res., 2010, 38(Web Server issue): W695-W699 CrossRef
  46. Artimo P., Jonnalagedda M., Arnold K., Baratin D., Csardi G., Castro E., Duvaud S., Flegel V., Fortier A., Gasteiger E., Grosdidier A., Hernandez C., Ioannidis V., Kuznetsov D., Liechti R., Moretti S., Mostaguir K., Redaschi N., Rossier G., Xenarios I., Stockinger H. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res., 2012, 40(1): W597-W603 CrossRef
  47. Kosugi S., Hasebe M., Tomita M., Yanagawa H. Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs. PNAS USA, 2009, 106(25): 10171-10176 CrossRef
  48. Marchler-Bauer A., Bo Y., Han L., He J., Lanczycki C.J., Lu S., Gwadz M. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res., 2017, 45(D1): D200-D203 CrossRef
  49. Luo P.G., Luo H.Y., Chang Z.J., Zhang H.Y., Zhang M., Ren Z.L. Characterization and chromosomal location of Pm40 in common wheat: a new gene for resistance to powdery mildew derived from Elytrigia intermedium. Theor. Appl. Genet., 2009, 118(6): 1059-1064 CrossRef
  50. Filiz E., Tombulo?lu H. In silico analysis of DREB transcription factor genes and proteins in grasses. Appl. Biochem. Biotechnol., 2014, 174(4): 1272-1285 CrossRef
  51. Allen M.D., Yamasaki K., Ohme-Takagi M., Tateno M., Suzuki M. A novel mode of DNA recognition by a b-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. The EMBO Journal, 1998, 17(18): 5484-5496 CrossRef
  52. Tsitsin N.V. Mnogoletnyaya pshenitsa [Perennial wheats]. Moscow, 1978 (in Russ.).
  53. The PLANTS Database. Accessed Available December 01, 2017.
  54. Khuat Thi Mai L., Divashuk M.G., Kroupin P.Y., Nguyen A.P., Kiseleva A.V., Karlov G.I. Differences in ploidy level and genome constitution revealed by cytogenetic analysis of Pseudoroegneria germplasm accessions: case study. IzvestiyaTSKHA, 2015, 2(4): 29-35.
  55. Collard B.C.Y., Mackill D.J. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos. T. Roy. Soc. B, 2008, 363(1491): 557-572 CrossRef