doi: 10.15389/agrobiology.2018.3.475eng

UDC 631.576.33:577.15.004.14:577.152.3

 

LIMITED PROTEOLYSIS AS A MEANS TO REDUCE THE ALLERGENICITY OF SEED STORAGE GLOBULINS (review)

A.M. Cherdivara

Moldova State University, Republic of Moldova, MD-2009, Kishinyov, Mateevich str., 60,e-mail alacherdivara@mail.ru (✉ corresponding author)

ORCID:
Cherdivaraa A.M. orcid.org/0000-0003-1276-4959

Received November 7, 2017

 

According to SDAP (structural database of allergenic proteins, http://fermi.utmb.edu/), storage 11S and 7S globulins from seeds of peanut, soybean and some other plants are allergens. A β-barrel conjoined with a group of α-helices represents the structural basis of domains of the two-domain 11S and 7S seed storage globulins. During evolution, extended disordered inserts of enhanced susceptibility to proteolytic attack appeared in the amino acid sequences of storage globulins outside the β-barrel-α-helix structural module. Regularities of storage globulin limited proteolysis during seed germination and in vitro are determined by these inserts. In this review, available information on successive reactions of limited proteolysis specific to 11S and 7S globulins from peanut, soybean and some other plants is collected. It was demonstrated that limited proteolysis of 11S globulin from peanut (A. Cherdivara et al., 2017) calls forth destruction of a C-terminal region of α-chains, including the region forming the group of α-helices. Three of the four antigen determinants (IgE epitopes) identified in the peanut subunit Ara h3 (P. Rabjohn et al., 1999) belong to this region. Thus, the limited proteolysis leads to a significant decrease in the allergenicity level of the subunit Ara h3. The presence of IgE epitopes in homologous regions of conserved sequences of α-helices from most other subunits of the peanut 11S globulin, non-identical to Ara h3, is very probable. Thus, the limited proteolysis of not only the Ara h3 subunit, but also the whole hetero-hexamer molecule of peanut 11S globulin can be accompanied by a significant decrease in the level of its allergenicity. Prospects for reducing allergenicity of soybean 11S globulin by limited proteolysis are not so unambiguous. On the one hand, the limited proteolysis of the subunit Gly m G1 leads to the destruction of the C-terminal region of the α-chains (A. Shutov et al., 2012), where both identified IgE epitopes are present (T.A. Beardslee et al., 2000). On the other hand, only one of the IgE epitopes identified in the Gly m G2 subunit (R.M. Helm et al., 2000) can be removed using limited proteolysis of this protein (A. Shutov et al., 1993). The detachment of the α-chain α-helices during limited proteolysis of several other 11S globulins was observed as well. A high degree of conservation of this region in the primary structures of 11S globulins allows suggesting the presence of IgE epitopes, similar to those identified in peanut and soybean 11S globulins, in many other storage proteins of the 11S globulin family. Prospects for the reduction of allergenicity of seed 7S globulins by limited proteolysis are advantageous as well. Limited proteolysis of peanut 7S globulin Ara h1 starts with complete destruction of a disordered N-terminal extension (A. Cherdivara et al., 2016), which contains one third of IgE epitopes identified in the amino acid sequence of this protein (D.S. Shin et al., 1998). Further limited proteolysis calls fourth destruction of another disordered region inside the N-terminal domain that contains an additional IgE epitope identified in the Ara h1 sequence. Summary information considered in the review on the structure of seed storage globulins, as well as on the IgE epitopes identified in their amino acid sequences, evidences the availability of limited proteolysis as a means of considerable reduction of the level of allergenicity, not only of peanut and soybean 11S and 7S globulins, but also of those from other plants whose seeds are used as food either directly or as additives to various food products.

Keywords: seed storage globulins, proteolysis, allergenicity, IgE epitopes, Arachis hypogaea L., peanut, Glycine max L., soybean.

 

Full article (Rus)

Full article (Eng)

 

REFERENCES

  1. Dunwell J.M. Structure, function, and evolution of vicilin and legumin seed storage proteins. In: Biotechnology of biopolymers - from synthesis to patents. A. Steinbüchel, Y. Doi (eds.). Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2005: 967-997.
  2. Shutov A.D., Wilson K.A. Seed storage globulins: their descent from bacterial ancestors and mechanisms of degradation. In: Globulins: biochemistry, production and role in immunity. S.D. Milford (ed.). Nova Science Publishers, NY, 2014: 71-104.
  3. Rudakova A.S., Cherdivara A.M., Wilson K.A., Shutov A.D. Seed storage globulins: origin and evolution of primary and higher order structures. Biochemistry (Moscow), 2015, 80: 1354-1361 CrossRef
  4. Dunwell J.M., Culham A., Carter C.E., Sosa-Aguirre C.R., Goodenpugh P.W. Evolution of functional diversity in the cupin superfamily. Trends Biochem. Sci., 2001, 26: 740-746 CrossRef
  5. Rupley J.A. Susceptibility to attack by proteolytic enzymes. Method. Enzymol., 1967, 11: 905-917.
  6. Hourihane J.O. Peanut allergy — current status and future challenges. Clin. Exp. Allergy, 1997, 27: 1240-1246 CrossRef
  7. Kleber-Janke T., Crameri R., Appenzeller U., Schlaak M., Becker W.M. Selective cloning of peanut allergens, including profilin and 2S albumins, by phage display technology. Int. Arch. Allergy Imm., 1999, 119: 265-274 CrossRef
  8. Al-Muhsen S., Clarke A.E., Kagan R.S. Peanut allergy: an overview. Can. Med. Assoc. J. (CMAJ), 2003, 168: 1279-1285.
  9. Helm R.M., Cockrell G., Connaughton C., Sampson H.A., Bannon G.A., Beilinson V., Livingstone D., Nielsen N.C., Burks A.W. A soybean G2 glycinin allergen. 1. Identification and characterization. Int. Arch. Allergy Imm., 2000, 123: 205-212 CrossRef
  10. Krishnan H.B., Kim W.S., Jang S., Kerley M.S. All three subunits of soybean beta-conglycinin are potential food allergens. J. Agr. Food Chem., 2009, 57: 938-943 CrossRef
  11. Wang T., Qin G.X., Sun Z.W., Zhao Y. Advances of research on glycinin and β-conglycinin: a review of two major soybean allergenic proteins. Crit. Rev. Food Sci., 2014, 54: 850-862 CrossRef
  12. Beyer K., Grishina G., Bardina L., Grishin A., Sampson H.A. Identification of an 11S globulin as a major hazelnut food allergen in hazelnut-induced systemic reactions. J. Allergy Clin. Immunol., 2002, 110: 517-523 CrossRef
  13. Wang F., Robotham J.M., Teuber S.S., Sathe S.K., Roux K.H. Ana o 2, a major cashew (Anacardium occidentale L.) nut allergen of the legumin family. Int. Arch. Allergy Imm., 2003, 132: 27-39 CrossRef
  14. Sharma G.M., Irsigler A., Dhanarajan P., Ayuso R., Bardina L., Sampson H.A., Roux K.H., Sathe S.K. Cloning and characterization of an 11S legumin, Car i 4, a major allergen in pecan. J. Agr. Food Chem., 2011, 59: 9542-9552 CrossRef
  15. Willison L.N., Tripathi P., Sharma G., Teuber S.S., Sathe S.K., Roux K.H. Cloning, expression and patient IgE reactivity of recombinant Pru du 6, an 11S globulin from almond. Int. Arch. Allergy Imm., 2011, 156: 267-281 CrossRef
  16. Palomares O., Cuesta-Herranz J., Vereda A., Sirvent S., Villalba M., Rodrigues R. Isolation and identification of an 11S globulin as a new major allergen in mustard seeds. Annals of Allergy, Asthma and Immunology, 2005, 94: 586-592 CrossRef
  17. Ivanciuk O., Schein C.H., Braun W. SDAP: database and computational tools for allergenic proteins. Nucleic Acids Res., 2003, 31: 359-362 CrossRef
  18. Shin D.S., Compadre C.M., Maleki S.J., Kopper R.A., Sampson H., Huang S.K., Burks A.W., Bannon G.A. Biochemical and structural analysis of the IgE binding sites on Ara h 1, an abundant and highly allergenic peanut protein. J. Biol. Chem., 1998, 273: 13753-13759 CrossRef
  19. Vereda A., Andreae D.A., Lin J., Shreffler W.G., Ibanez M.D., Cuesta-Herranz J., Bardina L., Sampson H.A. Identification of IgE sequential epitopes of lentil (Len c 1) by means of peptide microarray immunoassay. J. Allergy Clin. Immunol., 2010, 126: 596-601 CrossRef
  20. Rabjohn P., Helm E.M., Stanley J.S., West C.M., Sampson H.A., Burks A.W., Bannon G.A. Molecular cloning and epitope analysis of the peanut allergen Ara h 3. J. Clin. Invest., 1999, 103: 535-542 CrossRef
  21. Beardslee T.A., Zeece M.G., Sarath G., Markwell J.P. Soybean glycinin G1 acidic chain shares IgE epitopes with peanut allergen Ara h 3. Int. Arch. Allergy Imm., 2000, 123: 299-307 CrossRef
  22. Helm R.M., Cockrell G., Connaughton C., Sampson H.A., Bannon G.A., BeilinsonV., Nielsen N.C., Burks A.W. A soybean G2 glycinin allergen. 2. Epitope mapping and three-dimensional modeling. Int. Arch. Allergy Imm., 2000, 123: 213-219 CrossRef
  23. Yoshioka H., Ohmoto T., Urisu A., Mine Y., Adachi T. Expression and epitope analysis of the major allergenic protein Fag e 1 from buckwheat. J. Plant Physiol., 2004, 161: 761-767 CrossRef
  24. Jin T., Guo F., Chen Y.W., Howard A., Zhang Y.Z. Crystal structure of Ara h 3, a major allergen in peanut. Mol. Immunol., 2009, 46: 1796-1804 CrossRef
  25. Adachi M., Takenaka Y., Gidamis A.B., Mikami B., Utsumi S. Crystal structure of soybean proglycinin A1aB1b homotrimer. J. Mol. Biol., 2001, 305: 291-305 CrossRef
  26. Adachi M., Kanamori J., Masuda T., Yagasaki K., Kitamura K., Mikami B., Ursumi S. Crystal structure of soybean 11S globulin: glycinin A3B4 homohexamer. PNAS USA, 2003, 100: 7395-7400 CrossRef
  27. Tandang-Silvas M.R., Carrazco-Pena L., Barba de la Rosa A.P., Osuna-Castro J.A., Utsumi S., Mikami B., Maruyama N. Expression, purification and preliminary crystallization of amaranth 11S proglobulin seed storage protein from Amaranthus hypochondriacus L. Acta Crystallogr. F, 2010, 66: 919-922 CrossRef
  28. Tandang-Silvas M.R.G., Fukuda T., Fukuda C., Prak K., Cabanos C., Kimura A., Itoh T., Mikami B., Utsumi S., Maruyama N. Conservation and divergence on plant seed 11S globulins based on crystal structures. Biochim. Biophys. Acta, 2010, 1804: 1432-1442 CrossRef
  29. Shutov A.D., Kakhovskaya I.A., Bastrygina A.S., Bulmaga V.P., Horstmann C., Müntz K. Limited proteolysis of β-conglycinin and glycinin, the 7S and 11S storage globulins from soybean (Glycine max (L.) Merr.): structural and evolutionary implications. Eur. J. Biochem., 1996, 241: 221-228 CrossRef
  30. Shutov A., Rudakova A., Rudakov S., Kakhovskaya I., Schallau A., Maruyama N., Wilson K. Limited proteolysis regulates massive degradation of glycinin, storage 11S globulin from soybean seeds: an in vitro model. J. Plant Physiol., 2012, 169: 1227-1233 CrossRef
  31. Cherdivara A., Rudakova A., Rudakov S., Sutov A. Alergenul Ara h3, globulina de rezerva din semintele de arahide. 1. Proteoliza limitata cu papaina [Allergen Ara h3, storage 11S globulin from peanut seeds. 1. Papain limited proteolysis]. Studia Universitatis Moldaviae, seria Stiinte reale si ale naturii, 2017, 1(101): 37-40 (in Romanian).
  32. Cherdivaraa A., Rudakova A., Rudakov S., Sutov A. Alergenul Ara h3, globulina de rezerva din semintele de arahide. 2. Proteoliza limitata cu tripsina [Allergen Ara h3, storage 11S globulin from peanut seeds. 2. Typsin limited proteolysis]. Studia Universitatis Moldaviae, seria Stiinte reale si ale naturii, 2017, 1(101): 41-45 (in Romanian).
  33. Cherdivaraa A., Rudakova A., Sutov A. Globulinele de rezerva 7S din seminte ca alergeni. Imunoreactivitatea încrucisata între globulinele de rezerva 7S si 11S [Storage 11S globulins as allergens. Cross-immunoreactivity between storage 7S and 11S globulins]. Studia Universitatis Moldaviae, seria Stiinte reale si ale naturii, 2016, 1(91): 56-60 (in Romanian).
  34. Shutov A.D., Senyuk V.I., Kakhovskaya I.A., Pineda J. High molecular mass products of hydrolysis of soybean glycinin by trypsin. Biochemistry (Moscow), 1993, 58: 174-182.
  35. Rudakova A., Rudakov S., Kakhovskaya I., Wilson K., Yagasaki K., Utsumi S., Shutov A. Limited proteolysis controls massive degradation of glycinin, storage 11S globulin from soybean seeds. Materialele simpozionului national Agrobiodiversitatea vegetala în Republica Moldova: evaluatea, conservarea si utilizarea» [Vegetable agrobiodiversity in the Republic of Moldova: evaluation,
    conservation and use. Materials of national symposium
    ]. Chisinau, 2008: 396-402.
  36. Makaeva E., Lapteva N., Rudakova A., Rudakov S., Kakhovskaya I., SHutov A. 11S globulin podsolnechnika: kinetika ogranichennogo i kooperativnogo proteoliza papainom. [Makaeva E., Lapteva N., Rudakova A., Rudakov S., Kakhovskaya I., Shutov A. Sunflower seed 11S globulin: kinetics of papain limited and co-operative proteolyses]. Studia Universitatis Moldaviae, seria Stiinte reale si ale naturii, 2009, 1(21): 24-28 (in Russ.).
  37. Shutov A.D., Rudakova A.S., Klimova N.V., Lapteva N.A., Makaeva E.F., Wilson K. Limited proteolysis of oat 11S globulin by papain. Studia Universitatis Moldaviae, seria Stiinte reale si ale naturii, 2014, 1(71): 85-90..
  38. Lapteva N., Makaeva E., Rudakov S., Rudakova A., Kakhovskaya I., Shutov A. Smeshannyi tip proteoliza 11S globulina kedra papainom. [Lapteva N., Makaeva E., Rudakov S., Kakhovskaya I., Shutov A. Mixed-type papain proteolysis of cedar 11S globulin]. Studia Universitatis Moldaviae, Stiinte reale si ale naturii, 2010, 6(36): 9-13 (in Russ.).
  39. Rudakova A.S., Rudakov S.V., Kakhovskaya I.A., Shutov A.D. 11S storage globulin from pumpkin seeds: regularities of proteolysis by papain. Biochemistry (Moscow), 2014, 79: 820-825 CrossRef
  40. Ivanciuk O., Midoro-Horiuti T., Schein C.H., Xie L., Hillman G.R., Goldblum R.M., Braun W. The property distance index PD predicts peptides that cross-react with IgE antibodies. Mol. Immunol., 2009, 46: 873-883 CrossRef
  41. Lawrence M.C. Structural relationships of 7S and 11S globulins. In: Seed proteins. P.R. Shewry, R. Casey (eds.). Kluwer Academic Publishers, Dordrecht, 1999: 517-541.
  42. Ko T.P., Ng J.D., McPherson A. The three-dimensional structure of canavalin from jack bean (Canavalia ensiformis). Plant Physiol., 1993, 101: 729-744 CrossRef
  43. Lawrence M.C., Izard T., Beuchat M., Blagrove R.J., Colman P.M. Structure of phaseolin in 2.2 Å resolution: implications for a common vicilin/legumin structure and the genetic engineering of seed storage proteins. J. Mol. Biol.,1994, 238: 748-776 CrossRef
  44. Maruyama N., Adachi M., Takahashi K., Yagasaki A., Kohno M., Takenaka Y., Okuda E., Nakagawa S., Mikami B., Utsumi S. Crystal structures of recombinant and native soybean β-conglycinin β-homotrimers. Eur. J. Biochem., 2001, 268: 3595-3604 CrossRef
  45. Itoh T., Garcia R.N., Adachi M., Maruyama Y., Tecson-Mendoza E.M., Mikami B., Utsumi S. Structure of 8S alpha globulin, the major seed storage protein of mung bean. Acta Crystallogr. D, 2006, 62: 824-832 CrossRef
  46. Fukuda T., Maruyama N., Salleh M.R., Mikami B., Utsumi S. Characterization and crystallography of recombinant 7S globulins of Adzuki bean and structure-function relationships with 7S globulins of various crops. J. Agr. Food Chem., 2008, 56: 4145-4153 CrossRef
  47. Jin T., Wang Y., Chen Y.W., Fu T.J., Kothary M.H., McHugh T.H., Zhang Y. Crystal structure of Korean pine (Pinus koraiensis) 7S seed storage protein with copper ligands. J. Agr. Food Chem., 2014, 62: 222-228 CrossRef
  48. Chruszcz M., Maleki S.J., Majorek K.A., Demas M., Bublin M., Solberg R., Hurlburt B.K., Ruan S., Mattisohn C.P., Breiteneder H., Minor W. Structural and immunologic characterization of Ara h 1, a major peanut allergen. J. Biol. Chem., 2011, 286: 39318-39327 CrossRef
  49. Cabanos C., Urabe H., Tandang-Silvas M.R., Utsumi S., Mikami B., Maruyama N. Crystal structure of the major peanut allergen Ara h 1. Mol. Immunol., 2011, 49: 115-123 CrossRef
  50. Cherdivaraa A., Rudakova A., Rudakov S., Shutov A. Proteoliza limitata a alergenului Ara h1, globulina de rezerva 7S din semintele de arahide [Limited proteolysis of the allergen Ara h1, storage 7S globulin from peanut seeds]. Studia Universitatis Moldaviae, seria Stiinte reale si ale naturii, 2016, 6(96): 10-15 (in Romanian).
  51. Kawai M., Susuki S., Asano M., Miwa T., Shibai H. Characterization of 30-kDa fragments derived from beta-conglycinin degradation process during germination and seedling growth of soybean. Bioscience, Biothechnology and Biochemistry, 1997, 61: 794-799 CrossRef
  52. Seo S., Tan-Wilson A., Wilson K.A. Protease C2, a cysteine endopeptidase involved in the continuing mobilization of soybean β-conglycinin seed proteins. Biochim. Biophys. Acta, 2001, 1545: 192-206 CrossRef
  53. Zakharov A., Carchilan M., Stepurina T., Rotari V., Wilson K., Vaintraub I. A comparative study of the role of the major proteinases of germinated common bean (Phaseolus vulgaris L.) and soybean [Glycine max (L.) Merrill] seeds in the degradation of their storage proteins. J. Exp. Bot., 2004, 55: 2241-2249 CrossRef
  54. Shutov A.D., Rudakova A.S., Rudakov S.V., Kakhovskaya I.A., Schallau A.A., Wilson K.A., Maruyama N. Degradation of β-conglycinin β-homotrimer by papain: independent occurrence of limited and extensive proteolyses. Bioscience, Biothechnology and Biochemistry, 2013, 77: 2082-2086 CrossRef
  55. Senyuk V., Rotari V., Becker C., Zakharov A., Horstmann C., Müntz K., Vaintraub I. Does an asparaginyl-specific cysteine endopeptidase trigger phaseolin degradation in cotyledons of kidney bean? Eur. J. Biochem., 1998, 258: 546-558 CrossRef
  56. Rotari V.I., Senyuk V.I., Jivotovskaya A.V., Horstmann C., Vaintraub I.A. Proteinase A-like enzyme from germinated kidney bean seeds. Its action on phaseolin and vicilin. Physiol. Plantarum, 1997, 100: 171-177 CrossRef
  57. Rudakova A., Rudakov S., Lapteva N., Morari D., Stepurina T., Rotari V., Kakhovskaya I., Wilson K., Fukuda T., Utsumi S., Shutov A. In vivo and in vitro limited proteolysis of phaseolin: facts, suggestions and problems. Studia Universitatis Moldaviae, seria Stiinte reale si ale naturii, 2007, 1(01): 101-111.
  58. Jivotovskaya A.V. Senyuk V.I., Rotari V.I., Horstmann C., Vaintraub I.A. Proteolysis of phaseolin in relation to its structure. J. Agr. Food Chem., 1996, 44: 3768-3772 CrossRef
  59. Pele M. Peanut allergens. Romanian Biothechnological Letters, 2010, 15: 5204-5212.
  60. Wichers H.J., De Beyer T., Savelkoul F.J., van Amerongen A. The major peanut allergen Ara h1 and its cleaved-off N-terminal peptide; possible implications for peanut allergen detection. J. Agr. Food Chem., 2004, 52: 4903-4907 CrossRef
  61. Schechter I., Berger A. On the size of the active site in proteases. I. Papain. Biochem. Bioph. Res. Co., 1967, 27(2): 157-162 CrossRef

 

back