doi: 10.15389/agrobiology.2018.3.511eng

UDC 635.92:631.524.85:575/576

Supported financially by grant from Russian Foundation for Basic Research «Investigation of the mutability of seed offspring of introductions by the example of Rhododendron ledebourii Pojark.» (roject 14-34-50505)



T.V. Baranova1, R.N. Kalendar2, V.N. Kalayev1, V.N. Sorokopudov3,
J.V. Burmenko3

1Voronezh State University, 1, Universitetskaya pl., Voronezh, 394018 Russia, e-mail (✉ corresponding author),;
2University of Helsinki, Institute of Biotechnology, 00014 Finland, Helsinki, Viikinkaari 1, P.O. Box 65, e-mail;
3All-Russian Horticultural Institute for Breeding, Agrotechnology and Nursery, Federal Agency for Scientific Organizations, 4, ul. Zagor’evskaya, Moscow, 115598 Russia, e-mail,

Baranova T.V. 0000-0002-3526-7974
Sorokopudov V.N.
Kalendar R.N.
Burmenko J.V.
Kalayev V.N.

Received March 20, 2018


Currently, woody plants attract special attention given the prospects of their involving in bio- and genomic technologies to address challenges of sustainable environment, biodiversity, food security and production of raw materials. Thence, studies of cytogenetic characteristics of woody plants are increasingly relevant. The change in a number of cytogenetic characteristics, in particular, mitotic activity, which may increase and decrease depending on the intensity of stress loads, an increase in the pathology of mitosis, etc., has been shown. However, attempts to identify the similarities and differences in cytogenetic characteristics in woody plants on the basis of the results of molecular genetic comparison weren’t conducted yet. Sequences of the internal transcribed spacer (ITS) regions of nuclear ribosomal NA were used to generate a phylogenetic hypothesis for disjuncting of wood species of the genus Aralia (J. Wen, 2000), to specify of Rhododendron systematic state (T.V. Baranova et al., 2014) and other genera of the family Ericaceae (O. Schwery et al., 2015). Cluster analysis of nucleotide sequences and construction of the dendrogram were carried out using the ML (Maximum Likelihood, Nearest-Neighbor-Interchange) method in the MEGA software. Germination of Rhododendron seeds was carried out in Petri dishes at room temperature. Roots were stained with acetohematoxylin, rinsed with distilled water, and suppressed micro-preparations were prepared using Goyer’s fluid. Nucleotide sequences of the ITS1-ITS2 spacer of the parent plants and cytogenetic parameters (mitotic activity, level and spectrum of pathological mitoses, number of cells with residual nucleoli in the metaphase-telophase mitosis stage) we obtained from seed progeny in four Rhododendron species introduced into the conditions of the Central Black Earth region of Russia. The identity of the nucleotide sequence of the spacer ITS1-ITS2 in species of the genus Rhododendron leads to their greater similarity in the aggregate of cytogenetic indices. However, there is no complete analogy of cytogenetic characteristics in the species studied that have the identical sequence ITS1-ITS2. On the basis of this comparison, it can be assumed that genetic similarity in the studied Rhododendron species causes the similarity of cytogenetic indices. According to mitotic activity in the root meristem of the seedlings, two groups can be distinguished among the seed progeny, i.e. with a high value of mitotic activity, namely Rhododendron dauricum (7.6±0.3 %) and Rh. mucronulatum (7.7±0.7 %), and with low value, namely Rh. sichotense (5.6±0.7 %) and Rh. ledebourii (6.1±0.6%). The greatest cytogenetic instability is noted in Rh. ledebourii (5.2±1.1 %, the level of pathologies of mitosis in this species is maximal), in three other species it was lower (from 3.5±0.5 % for Rh. sichotense to 1.6±0.4 % for Rh. dauricum mitosis pathologies). A higher level of cells with a residual nucleolus at the stage of metaphase—telophase mitosis indicates a greater intensity of synthetic processes associated with adaptation in conditions of introduction. For this indicator, we can distinguish two groups: i) Rh. sichotense (13.3±1.2 %) with a high level of cells with a residual nucleolus at the stage of metaphase—telophase of mitosis, and ii) Rh. mucronulatum (9.1±1.1 %), Rh. dauricum (10.2±1.0 %) and Rh. ledebourii (10.9±1.3 %) with low values. Despite the difference in cytogenetic parameters in the seed offspring of the studied species, a cluster analysis of the totality of the characteristics of the course of mitosis and nucleolar activity made it possible to distinguish two groups: 1) Rh. mucronulatum and Rh. dauricum; 2) Rh. ledebourii and Rh. sichotense.The cytogenetic characteristics of the seed offspring of the species studied are species-specific.

Keywords: Rhododendron L., rhododendrons, seed progeny, introduced plants, cytogenetic characteristics, mitotic activity, cytogenetic abnormalities, mitotic pathologies, persistent nucleoli, ITS1-ITS2 sequences, cluster analysis.


Full article (Rus)

Full article (Eng)



  1. Sedel’nikova T.S., Muratova E.N., Pimenov A.V. Variability of chromosome numbers in gymnosperms. Biol. Bull. Rev., 2011, 1(2): 100-109 CrossRef
  2. Korshikov I.I., Tkacheva Yu.A., Privalikhin S.N. Cytogenetic abnormalities in Norway spruce (Picea abies (L.) Karst.) seedlings from natural populations and an introduction plantation. Cytol. Genet., 2012, 46(5): 280-284 CrossRef
  3. Oudalova A.A., Geras’kin S.A. The time dynamics and ecological genetic variation of cytogenetic effects in the Scots pine populations experiencing anthropogenic impact. Biol. Bull. Rev., 2012, 2(3): 254-267 CrossRef
  4. Belousov M.V., Mashkina O.S., Popov V.N. Citogenetic response of Scots pine (Pinus sylvestris L., 1753) (Pinaceae) to heavy metals. Comp. Cytogenet., 2012, 6(1): 93-106 CrossRef
  5. Vostrikova T.V., Butorina A.K. Cytogenetic responses of birch to stress factors. Biol. Bull. Russ. Acad.Sci., 2006, 33(2): 185-190 CrossRef
  6. Kalaev V.N., Karpova S.S., Artyukhov V.G. Cytogenetic characteristics of weeping birch (Betula pendula Roth) seed progeny in different ecological conditions. Bioremediation, Biodiversity & Bioavailability, 2010, 4(1): 77-83.
  7. Mashkina O.S., Butorina A.K., Tabackaja T.M. Karelian birch as a model for studying genetic and epigenetic variation related to the formation of patterned wood. Russian Journal of Genetics, 2011, 47(8): 951-957 CrossRef
  8. Artyukhov V.G., Kalaev V.N. Radiatsionnaya biologiya. Radioekologiya, 2005, 45(5): 619-628 (in Russ.).
  9. Gavrilov I.A., Butorina A.K. Tsitologiya, 2001, 43(10): 934-940 (in Russ.).
  10. Jones J.R., Ranney T.G., Eaker T.A. A novel method for inducing polyploidy in Rhododendron seedlings. J. Amer. Rhododendron Soc., 2008, 62: 130-135.
  11. De K.K., Saha A., Tamang R., Sharma B. Investigation on relative genome sizes and ploidy levels of Darjeeling-Himalayan species using flow cytometer. Indian Journal of Biotechnology, 2010, 9(1): 64-68.
  12. Lattier J.D., Ranney T.G., Lynch N.P. History and cytological reassessment of Rhododendron canadense. Journal of American Rhododendron Society, 2013, 67: 92-98.
  13. Kalaev V.N., Karpova S.S. The influence of air pollution on cytogenetic characteristics of birch seed progeny. Forest Genetics, 2003, 10(1): 11-18.
  14. Kalaev V.N., Butorina A.K. Cytogenetic effect of radiation in seed of oak (Quercus robur l.) trees growing on sites contaminated by Chernobyl fallout. Silvae Genetica, 2006, 55(3): 93-101 CrossRef
  15. Vostrikova T.V. Instability of cytogenetic parameters and genome instability in Betula pendula Roth. Russ. J. Ecol., 2007, 38(2): 80-84 CrossRef
  16. Mashkina O.S., Kuznetsova N.F., Isakov Yu.N., Butorina A.K. Self-fertility in Scots pine as a mechanism of resistance to chemical mutagens. Russ. J. Ecol., 2009, 40: 399-404 CrossRef
  17. Wen J. Internal transcribed spacer phylogeny of the Asian and Eastern North American disjunct Aralia Sect. Dimorphanthus (Araliaceae) and its biogeographic implications. Int. J. Plant Sci., 2000, 161(6): 959-966 CrossRef
  18. Baranova T.V., Kalendar' R.N., Kalaev V.N. Sibirskii lesnoi zhurnal, 2014, 6: 30-46 (in Russ.).
  19. Schwery O., Onstein R.E., Bouchenak-Khelladi Y., Xing Y., Carter R.J., Linder H.P. As old as the mountains: the radiations of the Ericaceae. New Phytol., 2015, 207(2): 355-367 CrossRef
  20. Goetsch L., Eckert A.J., Hall B.D. The molecular systematics of Rhododendron (Ericaceae): a phylogeny based upon RPB2 gene sequences. Systematic Botany, 2005, 30(3): 616-626 CrossRef
  21. Löytynoja A., Goldman N. An algorithm for progressive multiple alignment of sequences with insertions. PNAS USA, 2005, 102(30): 10557-10562 CrossRef
  22. Lanying Z., Yongqing W., Li Z. Genetic diversity and relationship of Rhododendron species based on RAPD analysis. American-Eurasian J. Agric. & Environ. Sci., 2008, 3(4): 626-631.
  23. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol., 2011, 28(10): 2731-2739 CrossRef
  24. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol., 2013, 30(12): 2725-2729 CrossRef
  25. Mizuta D., Nakatsuka A., Kobayashi N. Development of multiplex PCR markers to distinguish evergreen and deciduous azaleas. Plant Breeding, 2008, 127(5): 533-535 CrossRef
  26. Skaptsov M.V., Kutsev M.G., Krasnoborodkina M.A., Trosnichkov A.A., Kaigalov I.V., Shmakov A.I. Problemy botaniki Yuzhnoi Sibiri i Mongolii, 2017, 16: 264-267 (in Russ.).
  27. Skaptsov M.V., Kutsev M.G., Krasnoborodkina M.A., Smirnov S.V., Uvarova O.V., Sinitsyna T.A., Kechaikin A.A., Shmakov A.I. Turczaninowia, 2017, 20(4): 119-124 CrossRef (in Russ.).
  28. Li D.Z., Gao L.M., Li H.T., Wang H., Ge X.J., Liu J.Q., Chen Z.D., Zhou S.L., Chen S.L., Yang J.B., Fu C.X., Zeng C.X., Yan H.F., Zhu Y.J., Sun Y.S., Chen S.Y., Zhao L., Wang K., Yang T., Duan G.W. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. PNAS USA, 2011, 108(49): 19641-19646 CrossRef
  29. Milne R.I. Phylogeny and biogeography of Rhododendron subsection Pontica, a group with a tertiary relict distribution. Mol. Phylogenet. Evol., 2004, 33(2): 389-401 CrossRef
  30. Ramzan F., Younis A., Lim K.B. Application of genomic in situ hybridization in horticultural science. International Journal of Genomics, 2017, 2017: ID 7561909 CrossRef
  31. Al-Qurainy F., Khan S., Tarroum M., Nadeem M., Alansi S., Alshameri A. Biochemical and genetical responses of Phoenix dactylifera L. to cadmium stress. BioMed Research International, 2017, 2017: Article ID 9504057 CrossRef
  32. Zhang J.L., Zhang C.Q., Gao L. M., Yang J. B., Li H.T. Natural hybridization origin of Rhododendron agastum (Ericaceae) in Yunnan, China: inferred from morphological and molecular evidence. J. Plant Res., 2007, 120(3): 457-463 CrossRef
  33. Zha H.G., Milne R.I., Sun H. Morphological and molecular evidence of natural hybridization between two distantly related Rhododendron species from the Sino-Himalaya. Bot. J. Linn. Soc., 2008, 156(1): 119-129 CrossRef
  34. Tikhonova N.A., Polezhaeva M.A., Pimenova E.A. AFLP-analysis of genetic diversity in closely related species of rhododendrons subsection Rhodorastra (Ericaceae) in Siberia and the Russian Far East. Russ. J. Genet., 2012, 48(10): 985-992 CrossRef
  35. Kutsev M.G., Karakulov A.V. Turczaninowia, 2010, 13(3): 59-62 (in Russ.).
  36. Huang C.C., Hung K.H., Hwang C.C., Huang J.C., Lin H.D., Wang W.K., Wu P.Y., Hsu T.W., Chiang T.Y. Genetic population structure of the alpine species Rhododendron pseudochrysanthum sensu lato (Ericaceae) inferred from chloroplast and nuclear DNA. BMC Evol. Biol., 2011, 11(1): 108 CrossRef
  37. Belousov M.V., Basova E.V., Yusubov M.S., Berezovskaya T.P., Tkachev A.V. Khimiya rastitel'nogo syr'ya, 2000, 3: 45-64 (in Russ.).
  38. Karpova E.A., Karakulov A.V. Turczaninowia, 2011, 14(3): 145-149 (in Russ.).
  39. Vostrikova T.V., Kalaev V.N. Materialy Mezhdudarodnykh nauchnykh chtenii «Dendrologiya v nachale XXI veka» [Proc. Int. Conf. Dendrology — at the beginning of XXI century]. St. Petersburg, 2010: 50-53 (in Russ.).
  40. Chamberlain D.F., Hyam R., Argent G., Fairweather G., Walter K.S. The genus Rhododendron, its classification and synonymy. Royal Botanic Garden Edinburgh, Oxford, 1996.
  41. White T.J., Bruns T., Lee S., Taylor J.W. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: a guide to methods and applications. M.A. Innis, D.H. Gelfand, J.J. Sninsky, T.J. White (eds.). Academic Press, San Diego, 1990: 315-322.
  42. Alov I.A. Tsitofiziologiya i patologiya mitoza [Cytophysiology and pathology of mitosis]. Moscow, 1972 (in Russ.).
  43. Kulaichev A.P. Metody i sredstva kompleksnogo analiza dannykh [Methods and means of complex data analysis]. Moscow, 2006 (in Russ.).
  44. Kazantseva I.A. Patologiya mitoza v opukholyakh cheloveka [Pathology of mitosis in human tumors]. Novosibirsk, 1981 (in Russ.).
  45. Lebedeva L.I., Fedorova S.A., Trunova S.A., Omelyanchuk L.V. Mitosis: regulation and organization of cell division. Russ. J. Genet., 2004, 40(12): 1313-1330 CrossRef