doi: 10.15389/agrobiology.2017.3.544eng

UDC 633.18:631.522/.524:575.2:58.051(574)



D.S. Batayeva1, B.N. Usenbekov2, A.B. Rysbekova3,
Zh.M. Mukhina4, D.T. Kazkeyev5, Ye.A. Zhanbyrbayev5,
I.A. Sartbayeva2, S.V. Garkusha4, S.A. Volkova6

1Kazakh State Women's Pedagogical University, 99, Aiteke Bi str., Almaty, Republic of Kazakhstan 050000, e-mail;
2Institute of Plant Biology and Biotechnology, 45, Timiryazev str., Almaty, Republic of Kazakhstan 050040, e-mail;
3Saken Seifullin Kazakh Agrotechnical University, 62, Pobeda str., Astana, Republic of Kazakhstan 010000, e-mail;
4All-Russiaт Rice Research Institute, Federal Agency of Scientific Organizations, 3, Belozernii, Krasnodar, Russia 350921, e-mail (corresponding author);
5Kazakh National Agrarian University, 8, Abay av., Almaty, Republic of Kazakhstan 050010, e-mail;
6Kuban State Agrarian University, 13, ul. Kalinina, Krasnodar, Russia 350044,

Batayeva D.S.
Usenbekov B.N.
Rysbekova A.B.
Mukhina Zh.M.
Kazkeyev D.T.
Zhanbyrbayev  Ye.A.
Sartbayeva I.A.
Garkusha S.V.
Volkova S.A.

Received October 4, 2016


About 25 % of the entire land surface is represented by saline soils, and up to 90 % of the total irrigated area — in some regions of Central Asia and the Caucasus, Ukraine and Kazakhstan. Rice-growing region of the Republic of Kazakhstan is also located in the area with high salinity. A challenge for rice growing in Kazakhstan is deteriorating humus and reclamation of soil, rise in soil secondary salinity and degradation. In Kyzylorda region, pollution of surface (up to 3-5 g/l) and ground water (up to 6-7 g/l) by salt residues reaches a critical point. The dominating sulfate-chloride-sodium type of salinity is especially toxic for crops. Akdalinski and Karatal zones of irrigation in the Almaty region are also located within the provinces of sulfate-soda and boric biogeochemical soil salinity. According the data of Kazakh Rice Research Institute, in recent years the rice yields and yield quality have sharply decreased — from 50 to 35-48 centners per hectare, and from 65 to 45-50 % of the groats output, respectively. In this regard, the rice breeding for salt tolerance is the most important to ensure food security in Kazakhstan. The objective of our study was the evaluation and selection a promising starting material of rice resistant to different types of salinity. To this end, we studied the rice (Oryza sativa L.) varieties, collection samples and their hybrid combinations of different generations derived from Russia, Kazakhstan and Philippine (34 genotypes in total). For the initial assessment at the seedling stage we used the laboratory screening for tolerance to various types of salinity, i.e. chloride, sulphate and carbonate. Saline stress negatively affected seedling growth and total weight in the studied samples. It was revealed that the carbonate type of salinity is the most toxic for rice plants; the chloride and sulfate types were less adverse. The hybrid collection sample F2 Khankai 429 × 4-09 and as well as varieties Marzhan and Madina accumulated the highest percentage of biomass compared to the control at the salinity of all three types. Therefore, these genotypes are valuable in selection for salt tolerance. Molecular screening of chromosomal DNA regions linked to quantitative trait loci of salt tolerance (Saltol QTL) by PCR with microsatellite markers closely linked to the target chromosomal regions, RM 493 and AP 3206, showed RM 493 to produce polymorphism which allowed to distinguish the studied genotypes contrasting in salt tolerance. Thus RM 493 is informative to rank the rice genetic plasma by salt tolerance.

Keywords: Oryza sativa L., rice, chloride salinity, sulfate salinization, carbonate salinity, molecular screening for salt tolerance, SSR markers, selection.


Full article (Rus)

Full text (Eng)



  1. Tkachenko Yu.A., Doseeva O.A. Risovodstvo, 2007, 10: 59-66 (in Russ.).  
  2. Benduhn F., Renard P. A dynamic model of the Aral Sea water and salt balance. J. Marine Syst., 2004, 47: 35-50.
  3. Umirzakov S.I. Materialy Mezhdunarodnoi nauchno-prakticheskoi konferentsii «Nauchno-innovatsionnye osnovy razvitiya risovodstva v Kazakhstane i stranakh zarubezh'ya» [Proc. Int. Conf. «Science and innovations in rice breeding in Kazakhstan and abroad]. Kyzylorda, 2012: 17 (in Russ.).  
  4. Ctroganov B.P., Klyshev L.K., Azimov R.A. Problemy soleustoichivosti rastenii [Salt tolerance in plants]. Tashkent, 1989 (in Russ.).  
  5. Hosseini S.J., Tahmasebi S.Z., Pirdashti H. Screening of rice (Oryza sativa L.) genotypes for NaCl tolerance at early seedling stage. International Journal of Agronomy and Plant Production, 2012, 3(8): 274-283.
  6. Abbas M.K., Ali A.S., Hasan H.H., Ghal R.H. Salt tolerance study of six cultivars of rice (Oryza sativa L.) during germination and early seedling growth. J. Agr. Sci., 2013, 5(1): 250-258 CrossRef
  7. Bhowmik S.K., Titov S., Islam M.M., Siddika A., Sultana S., Shahidul Haque M.D. Phenotypic and genotypic screening of rice genotypes at seedling stage for salt tolerance. Afr. J. Biotechnol., 2009, 8(23): 6490-6494.
  8. Beletskii Yu.D., Shevyakova N.I., Karnaukhova T.B. Plastidy i adaptatsiya rastenii k zasoleniyu [Plastids and plany adaptiveness to salinization]. Rostov-na-Donu, 1990 (in Russ.).   
  9. Tiwari S., Krishnamurthy S.L., Kumar V., Singh B., Rao A.R., Mithra A., Rai V., Singh A.K., Singh N.K. Mapping QTLs for salt tolerance in rice (Oryza sativa L.) by bulked segregant analysis of recombinant inbred lines using 50K SNP chip. PLoS ONE, 2016, 11(4): e0153610 CrossRef
  10. Udovenko G.V. V sbornike: Metody otsenki ustoichivosti rastenii k neblagopriyatnym faktoram sredy [Methods to assay plant tolerance to adverse factors]. Leningrad, 1976: 228-238 (in Russ.).    
  11. Akbar M., Yabuno T., Nakao S. Breeding for saline resistant varieties of rice. I. Variability for salt tolerance among some rice varieties. Jpn. J. Breed., 1977, 22: 277-284.
  12. Erygin P.S., Krasnook N.P. Osnovy biologii risa [Fundamentals of rice biology]. Moscow, 1965: 15-33 (in Russ.).    
  13. Skazhennik M.A., Vorob'ev N.V., Doseeva O.A. Metody fiziologicheskikh issledovanii v risovodstve [Methods in rice physiology]. Krasnodar, 2009: 23 (in Russ.).   
  14. Singh R.K., Gregorio G.B., Ali S., Arceta M., Mohammadi R., Vispo N.A., Amas J., Thomson M., Gautam R., Brar D.S., Ismail A. Molecular screening and diversity of salt tolerance in rice genotypes. FSC Brief No 9. Food Security Center, Germany, 2011.
  15. Murray M.G., Thompson W.F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res., 1980, 8(19): 4321-4325 CrossRef
  16. Huyen L.T.N., Cuc L.M., Ismail A.M., Ham L.H. Introgression the salinity tolerance QTLs Saltol into AS996, the elite rice variety of Vietnam. American Journal of Plant Sciences, 2012, 3: 981-987.
  17. Amirova S. Tezisy dokladov IV Vsesoyuznogosimpoziuma «Fiziologicheskie i biokhimicheskie osnovy soleustoichivosti rastenii» [Proc. IV All-Union Symp. «Physiological and biochemical fundamentals of salt tolerance in pants»]. Tashkent, 1986: 76 (in Russ.).    
  18. Stroganov B.P. Fiziologicheskie osnovy soleustoichivosti rastenii [Physiological bases of salt tolerance in plants]. Moscow, 1962 (in Russ.).    
  19. Leonova I.N. Vavilovskii zhurnal genetiki i selektsii, 2013, 17(2): 314-325 (in Russ.).    
  20. Gregorio G.B., Senadhira D., Mendoza R.D., Manigbas N.L., Roxas J.P., Guerta C.Q. Progress in breeding for salinity tolerance and associated abiotic stresses in rice. Field Crops Res., 2002, 76: 91-101 CrossRef
  21. Yamaguchi Y., Blumwald E. Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci., 2005, 10: 615-620 CrossRef
  22. Ismail A.M., Heuer S., Thomson M.J., Wissuwa M. Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Mol. Biol., 2007, 65: 547-570 CrossRef
  23. Hu S., Tao H., Qian Q., Guo L. Genetic and molecular breeding for salt-tolerance in rice. Rice Genomics and Genetics, 2012, 3(7): 39-49 CrossRef
  24. Blumwald E., Grover A. Salt tolerance. In: Plant biotechnology: current and future uses of genetically modified crops. N.G. Halford (ed.). UK, John Wiley & Sons, Ltd, 2006: 206-224 CrossRef
  25. Linh L.H., Linh T.H, Xuan T.D., Ham L.H., Ismail A.M., Khanh T.D. Molecular breeding to improve salt tolerance of rice (Oryza sativa L.) in the Red River Delta of Vietnam. International Journal of Plant Genomics, 2012: Article ID 949038 CrossRef
  26. Waziri A., Kumar P., Purty R.S. Saltol QTL and their role in salinity tolerance in rice. Austin J. Biotechnol. Bioeng., 2016, 3(3): 1067.
  27. Islam M.R., Salam M.A., Hassan L. QTL mapping for salinity tolerance at seedling stage in rice. J. Agric. Food Technol., 2011, 23: 137-146.
  28. Sabouri H., Rezai A.M., Moumeni A. QTLs mapping of physiological traits related to salt tolerance in young rice seedlings. Biologia Plantarum, 2009, 53: 657-662 CrossRef
  29. Hien Thi Thu Vu, Duc Duy Le, Abdelbagi M. Ismail, Ham Huy Le. Marker-assisted backcrossing (MABC) for improved salinity tolerance in rice (Oryza sativa L.) to cope with climate change in Vietnam. Australian Journal of Crop Science, 2012, 6(12): 1649-1654.
  30. Thomson M.J., de Ocampo M., Egdane J., Rahman M.A., Sajise A.G., Adorada D.L., Tumimbang-Raiz E., Blumwald E., Seraj Z.I., Singh R.K., Gregorio G.B., Ismail A.M. Characterizing the Saltol quantitative trait locus for salinity tolerance in rice. Rice, 2010, 3: 148-160 CrossRef