doi: 10.15389/agrobiology.2017.3.501eng

UDC 633.11:631.523.4:57.045:631.522/.524

Carried out under the ICG SB RAS budget project № 0324-2016-0001.
Supported by Russian Foundation for Basic Research (grant № 16-29-12877)



E.K. Khlestkina1, 2, E.V. Zhuravleva3, T.A. Pshenichnikova1,
N.I. Usenko 2, E.V. Morozova1, S.V. Osipova4, M.D. Permyakova4,
D.A. Afonnikov1, 2, Yu.S. Otmakhova2, 5

1Federal Research Center Institute of Cytology and Genetics SB RAS, Federal Agency of Scientific Organizations, 10, prosp. Akademika Lavrent’eva, Novosibirsk, 630090 Russia, e-mail (corresponding author),,,;
2Novosibirsk State University, 2, ul. Pirogova, Novosibirsk, 630090 Russia,
3Federal Agency of Scientific Organizations, 14, ul. Solyanka, Moscow, 109028 Russia, e-mail;
4Siberian Institute of Plant Physiology and Biochemistry SB RAS, Federal Agency of Scientific Organizations, 132, ul. Lermontova, Irkutsk, 664033 Russia,
5Institute of Economics and Industrial Engineering SB RAS, Federal Agency of Scientific Organizations, 17, prosp. Akademika Lavrent’eva, Novosibirsk, 630090 Russia

Khlestkina E.K.

Received April 2, 2017


The purpose of this interdisciplinary research is to analyze the available data on the domestic market of bakery products, assess the factors resulting in increase of the bread consumption, and opportunities of improvement of technological properties of flour and dough through the realization of the genetic potential of bread wheat varieties, taking into account environmental factors. In modern conditions, in the bakery products market of such negative tendencies are observed as decrease in volumes of bread production and deterioration of quality of the products. Among the various factors influencing the formation of these trends, one can point out the poor quality of flour, accompanied by deterioration in the rheological properties of the dough. In the practice, the correction of flour of inadequate quality is increasingly being made through the introduction of chemical improvers, which contributes to improving the technological process. At the same time there is a loss of traditional taste and a change in the consumer characteristics of bread, which leads to the refusal or reduction of consumption of bread by a part of the population of our country. This review summarizes data on the dynamics of average per capita consumption of bread and bakery products and the change in the ratio of these indicators to the consumption of meat products. An alternative approach to solving the problems of flour quality can be attributed to the possibilities of natural improvement of its initial characteristics through the realization of the genetic potential of bread wheat varieties, taking into account environmental factors that ultimately influence the formation of technological properties of flour and dough. In recent years, data have been accumulated that have made significant progress in understanding the complex interaction of various genetic systems and biochemical processes underlying the formation of grain properties that affect the quantity and quality of the flour. Integral components in this complex interaction are the environmental factors, under the influence of which the physiological and biochemical processes are modulated, and the mode of realization of genetic information is changing. The article summarizes the data on the influence of various environmental factors on the technological properties of flour and dough and describes the possibilities of modern IT-support of the selection process, facilitating the evaluation of quantitative characteristics and taking into account the relationship between genotype, phenotype and environmental conditions. Advances in the identification of genetic factors affecting the technological properties of flour and dough are discussed and sources of useful variants of these genes are considered. The importance of the use of winter bread wheat for increasing the share of production of high-quality nutritive grains is emphasized, as well as the results of the search for donors of useful genes among the old varieties of spring bread wheat. Among the latter, varieties with a high content of raw gluten and high elasticity of the dough have been identified. In conclusion, the ways of applying data on the influence of genetic and environmental factors on the formation of technological properties of flour and dough in a selection experiment are discussed, and the importance of obtaining varieties with genetically determined high strength of flour as a source of natural improver of weak flour is replaced in place of widely used chemical additives.

Keywords: wheat, bread, technological properties, bread-making quality, genes, genetics, physiological processes, biochemical characteristics, ecological factors.


Full article (Rus)

Full text (Eng)



  1. Usenko N.I., Poznyakovskii V.M., Otmakhova Yu.S. EKO (Vserossiiskii ekonomicheskii zhurnal), 2016, 1: 109-124 (in Russ.).    
  2. Khlestkina E.K., Pshenichnikova T.A., Usenko N.I., Otmakhova Yu.S. Vavilovskii zhurnal genetiki i selektsii, 2016, 20(4): 511-527 CrossRef (in Russ.).   
  3. Rozmainskii I.I. Terra Economicus, 2011, 9(1): 8-16 (in Russ.).    
  4. Eksperty Krasnoyarskogo TSSM snyali s reitingovoi otsenki 40 protsentov issledovannykh obraztsov khleba [Experts withdrew from the rating of 40 percent of the samples of bread examined in Krasnoyarsk]. Available Accessed October 01, 2016 (in Russ.).   
  5. Rossiiskii statisticheskii ezhegodnik [Russian Statistical Yearbook]. Moscow, 2014 (in Russ.).  
  6. Rossiya v tsifrakh [Russia in Figures]. Moscow, 2015 (in Russ.).   
  7. Prognoz struktury posevnykh ploshchadei (2016) Forecast of the structure of sown areas for 2016]. Available Accessed October 01, 2016 (in Russ.).   
  8. Gosudarstvennyi reestr okhranyaemykh selektsionnykh dostizhenii [State Register of Breeding Achievements]. Moscow, 2016 (in Russ.).     
  9. Krupnova O.V. A comparison of grain quality in spring and winter wheats associated with market classes (review). Agricultural Biology, 2013, 1: 15-25 CrossRef
  10. Tempy rosta. 2014 [Growth rates]. Available Accessed March 25, 2017 (in Russ.).     
  11. Sandukhadze B.I., Kochetygov V.G., Rybakova M.I., Bugrova V.V., Korovushkina M.S., Guseva N.YU., Morozov A.A., Sandukhadze E.K. Zernobobovye i krupyanye kul'tury, 2013, 2(6): 19-23 (in Russ.).       
  12. Afonnikov D.A., Genaev M.A., Doroshkov A.V., Komyshev E.G., Pshenichnikova T.A.Genetika, 2016, 52(7): 788-803 CrossRef (in Russ.).      
  13. Huang M., Wang Q.G., Zhu Q.B., Qin J.W., Huang G. Review of seed quality and safety tests using optical sensing technologies. Seed Sci. Technol., 2015, 43(3): 337-366 CrossRef
  14. Tanabata T., Shibaya T., Hori K., Ebana K., Yano M. Smart Grain: high-throughput phenotyping software for measuring seed shape through image analysis. Plant Physiol., 2012, 160(4): 1871-1880 CrossRef
  15. Smykalova I., Grillo O., Bjelkova M., Pavelek M., Venora G. Phenotypic evaluation of flax seeds by image analysis. Ind. Crop. Prod., 2013, 47: 232-238 CrossRef
  16. Yang X., Wang L., Zhou X., Shuang S., Zhu Z., Li N., Li Y., Liu F., Liu S., Lu P., Ren G., Dong C. Determination of protein, fat, starch, and amino acids in foxtail millet Setaria italica (L.) Beauv. by Fourier transform near-infrared reflectance spectroscopy. Food Sci. Biotechnol., 2013, 22: 1495-1500 CrossRef
  17. Armstrong P.R., Tallada J.G., Hurburgh C., Hildebrand D.F., Specht J.E. Development of single-seed near-infrared spectroscopic predictions of corn and soybean constituents using bulk reference values and mean spectra. Transactions of the ASABE, 2011, 54: 1529-1535 CrossRef
  18. Singh C.B., Jayas D.S., Paliwal J., White N.D.G. Fungal damage detection in wheat using shortwave near-infrared hyperspectral and digital colour imaging. International Journal of Food Properties, 2012, 15: 11-24 CrossRef
  19. Shahin M.A., Symons S.J., Hatcher D.W. Quantification of mildew damage in soft red winter wheat based on spectral characteristics of bulk samples: A comparison of visible-near-infrared imaging and near-infrared spectroscopy. Food Bioprocess Technol., 2014, 7: 224-234 CrossRef
  20. Duan L., Yang W., Huang C., Liu Q. A novel machine-vision-based facility for the automatic evaluation of yield-related traits in rice. Plant Methods, 2011, 7(1): 1-13 CrossRef
  21. Munns R., James R.A., Sirault X.R., Furbank R.T., Jones H.G. New phenotyping methods for screening wheat and barley for beneficial responses to water deficit. J. Exp. Bot., 2010, 61(13): 3499-3507 CrossRef
  22. Fehér-Juhász E., Majer P., Sass L., Lantos C., Csiszár J., Turóczy Z., Mihály R., Mai A., Horváth G.V., Vass I., Dudits D., Pauk J. Phenotyping shows improved physiological traits and seed yield of transgenic wheat plants expressing the alfalfa aldose reductase under permanent drought stress. Acta Physiologiae Plantarum, 2014, 36(3): 663-673 CrossRef
  23. Gonzalez-Dugo V., Hernandez P., Solis I., Zarco-Tejada P.J. Using high-resolution hyperspectral and thermal airborne imagery to assess physiological condition in the context of wheat phenotyping. Remote Sens., 2015, 7(10): 13586-13605 CrossRef
  24. Lopes M.S., Rebetzke G.J., Reynolds M. Integration of phenotyping and genetic platforms for a better understanding of wheat performance under drought. J. Exp. Bot., 2014, 65(21): 6167-6177 CrossRef
  25. Nuttall J.G., O'Leary G.J., Panozzo J.F., Walker C.K., Barlow K.M., Fitzgerald G.J. Models of grain quality in wheat — a review. Field Crop Res., 2017, 202: 136-145 CrossRef
  26. DuPont F.M., Hurkman W.J., Tanaka C.K., Chan R. BiP, HSP70, NDK and PDI in wheat endosperm. I. Accumulation of mRNA and protein during grain development. Physiologia Plantarum, 1998, 103: 70-79.
  27. Farooq M., Bramley H., Palta J.A., Siddique K.H.M. Heat stress in wheat during reproductive and grain-filling phases. Crit. Rev. Plant Sci., 2011, 30: 1-17 CrossRef
  28. Hurkman W.J., Vensel W.H., Tanaka C.K., Whitehand L., Altenbach S.B. Effect of high temperature on albumin and globulin accumulation in the endosperm proteome of the developing wheat grain. J. Cereal Sci., 2009, 49: 12-23 CrossRef
  29. Blumenthal C.S., Barlow E.W.R., Wrigley C.W. Growth environment and wheat quality: the effect of heat stress on dough properties and gluten proteins. J. Cereal Sci., 1993, 18: 3-21.
  30. Blumenthal C.S., Stone P.J., Gras P.W., Bekes F., Clarke B., Barlow E.W.R., Appels R., Wrigley C.W. Heat-shock protein 70 and dough-quality changes resulting from heat stress during grain filling in wheat. Cereal Chem., 1998, 75: 43-50.
  31. Hawkesford M.J. Reducing the reliance on nitrogen fertilizer for wheat production. J. Cereal Sci., 2014, 59: 276-283 CrossRef
  32. Peltonen J., Virtonen A. Effect of nitrogen fertilizers differing in release characteristics on the quantity of storage proteins in wheat. Cereal Chem., 1994, 71: 1-5.
  33. Thomason W.E., Phillips S.B., Pridgen T.H., Kenner J.C., Griffey C.A., Beahm B.R., Seabourn B.W. Managing nitrogen and sulfur fertilization for improved bread wheat quality in humid environments. Cereal Chem., 2007, 84: 450-462 CrossRef
  34. Xue Ch., Schulte auf’m Erley G., Rossmann A., Schuster R., Koeh-
    ler P., Mühling K.-H. Split nitrogen application improves wheat baking quality by influencing protein composition rather than concentration. Front. Plant Sci., 2016, 7: 738 CrossRef
  35. Massoudifar O., Kodjouri F.D., Mohammadi G.N., Mirhadi M.J. Effect of nitrogen fertilizer levels and irrigation on quality characteristics in bread wheat (Triticum aestivum L.). Archives of Agronomy and Soil Science, 2014, 60: 925-934 CrossRef
  36. Guarda G., Padovan S., Delogu G. Grain yield, nitrogen-use efficiency and baking quality of old and modern Italian bread-wheat cultivars grown at different nitrogen levels. Eur. J. Agron., 2004, 21: 181-192 CrossRef
  37. Skerrit J.H., Lew P.H., Castle S.L. Accumulation of gliadin and glutenin polypeptides during development of normal and Sulphur-deficient wheat seed: Analysis using specific monoclonal antibodies. J. Exp. Bot., 1988, 39(203): 723-737.
  38. Shewry P.R., Tatham A.S. Disulfide bonds in wheat gluten protein. J. Cereal Sci., 1997, 25: 135-146.
  39. Erekul O., Götz K.-P., Koca Y.O. Effect of sulphur and nitrogen fertilization on bread-making quality of wheat (Triticum aestivum L.) varieties under Mediterranean climate conditions. J. Appl. Bot. Food Qual., 2012, 85: 17-22.
  40. Shahsavani S., Gholami A. Effect of sulfur fertilization on breadmaking quality of three winter wheat varieties. Pakistan Journal of Biological Sciences, 2008, 11: 2134-2138.
  41. Järvan M., Edesi L., Adamson A., Lukme L., Akk A. The effect of sulphur fertilization on yield, quality of protein and baking properties of winter wheat. Agronomy Research, 2008, 6(2): 459-469.
  42. Stepien A., Wojtkowiak K. Effect of foliar application of Cu, Zn, and Mn on yield and quality indicators of winter wheat grain. Chilean J. Agric. Res., 2016, 76(2): 220-227 CrossRef
  43. Kimball B.A., Morris C.F., Pinter P.J., Wall G.W., Hunsaker D.J., Adamsen F.J., LaMorte R.L., Leavitt S.W., Thompson T.L., Matthias A.D., Brooks T.J. Elevated CO2, drought and soil nitrogen effects on wheat grain quality. New Phytologist, 2001, 150: 295-303.
  44. Högy P., Wieser H., Köhler P., Schwadorf  K., Breuer J., Franzaring J., Muntifering R., Fangmeier A. Effects of elevated CO2 on grain yield and quality of wheat: results from a three-year FACE experiment. Plant Biol., 2009, 11(Suppl. 1): 60-69 CrossRef
  45. Fernando N., Panozzo J., Tausz M., Norton R., Fitzgerald G., Khan A., Seneweera S. Rising CO2 concentration altered wheat grain proteome and flour rheological characteristics. Food Chem., 2015, 170: 448-454.
  46. Högy P., Zörb C., Langenkämper G., Betsche T., Fangmeier A. Atmospheric CO2 enrichment changes the wheat grain proteome. J. Cereal Sci., 2009, 50(2): 248-254 CrossRef
  47. MacRitchie F. Evaluation of contributions from wheat protein fractions to dough mixing and bread making. J. Cereal Sci., 1987, 6: 259-268 CrossRef
  48. MacRitchie F., Kasarda D.D., Kuzmicky D.D. Characterization of wheat protein fractions differing in contributions to bread-making quality. Cereal Chem., 1991, 68: 122-130.
  49. Uthayakumaran S., Newberry M., Keentok M., Stoddard F.L., Bekes F. Basic rheology of bread dough with modified protein content and glutenin-to-gliadin ratio. Cereal Chem., 2000, 77: 744-749 CrossRef
  50. Wieser H., Manderscheid R., Erbs M., Weigel H.J. Effects of elevated atmospheric CO2 concentrations on the quantitative protein composition of wheat grains. J. Agr. Food Chem., 2008, 56(15): 6531-6535.
  51. Panozzo J.F., Eagles H.A., Wootton M. Changes in protein composition during grain development in wheat. Aust. J. Agr. Res., 2001, 52(4): 485-493.
  52. Fernando N., Panozzo J., Tausz M., Norton R., Fitzgerald G., Seneweera S. Rising atmospheric CO2 concentration affects mineral nutrient and protein concentration of wheat grain. Food Chem., 2012, 133(4): 1307-1311 CrossRef
  53. Taub D.R., Miller B., Allen H. Effects of elevated CO2 on the protein concentration of food crops: a meta-analysis. Glob. Change Biol., 2008, 14: 565-575.
  54. Shewry P.R., Underwood C., Wan Y., Lovegrove A., Bhandan D., Toole G., Mills C.E.N., Dehyer K., Mitchell R.A.C. Storage product synthesis and accumulation in developing grains of wheat. J. Cereal Sci., 2009, 50: 106-112 CrossRef
  55. Lemelin E., Branlard G., Salvo L., Lein V., Aussenac T., Dayde J. Breadmaking stability of wheat flour: Relation between mixing properties and molecular weight distribution of polymeric glutenins. J. Cereal Sci., 2005, 42(3): 317-326.
  56. Takemoto Y., Coughlan S.J., Okita T.W., Satoh H., Ogawa M., Kumamaru T. The rice mutant esp2 greatly accumulates the glutelin precursor and deletes the protein disulfide isomerase. Plant Physiol., 2002, 128(4): 1212-1222 CrossRef
  57. Koh A., Nishimura K., Urade R. Relationship between endogenous protein disulfide isomerase family proteins and glutenin macropolymer. J. Agric. Food Chem., 2010, 58(24): 12970-12975 CrossRef
  58. Li X., Wu Y., Zhang D.Z., Gillikin J.W., Boston R.S., Franceschi V.R., Okita T.W. Rice prolamin protein body biogenesis: a BiP-mediated process. Science, 1993, 262: 1054-1056.
  59. Osipova S.V., Permyakov A.V., Mitrofanova T.N., Dudareva L.V., Trufanov V.A. Biokhimiya, 2005, 70(8): 1130-1136 (in Russ.).     
  60. Osipova S.V., Permyakov A.V., Mitrofanova T.N., Trufanov V.A., Ermakova M.F., Chistyakova A.K., Pshenichnikova T.A. GSH-dependent protein disulfide oxidoreductase of wheat grain: activity in maturing wheat kernels and relationship with rheological properties of dough. Cereal Res. Commun., 2007, 35(3): 1477-1486 CrossRef
  61. Pshenichnikova T.A., Osipova S.V., Permyakova M.D., Mitrofano-
    va T.N., Lokhvasser U., Reder M., Berner A. Genetika, 2008, 44(5): 654-662 (in Russ.).     
  62. Rhazi L., Cazalis R., Lemelin E., Aussenac Y. Changes in the glutathione thiol-disulfide status during wheat grain development. Plant Physiol. Bioch., 2003, 41: 895-902 CrossRef
  63. Li W., Tsiami A.A., Bollecker S.S., Schofield J.D. Glutathione and related thiol compounds. II. The importance of protein bound glutathione and related protein-bound compounds in gluten proteins. J. Cereal Sci., 2004, 39: 213-224 CrossRef
  64. Permyakova M.D., Trufanov V.A., Pshenichnikova T.A., Ermakova M.F. Prikladnaya biokhimiya i mikrobiologiya, 2010, 46(1): 96-102 (in Russ.).      
  65. Permyakova M.D., Permyakov A.V., Osipova S.V., Pshenichnikova T.A., Shishparenok A.A., Rudikovskaya E.G., Rudikovskii A.V, Verkhoturov V.V., Berner A. Fiziologiya rastenii, 2017, 64(1): 1-14 CrossRef (in Russ.).
  66. Law C.N., Young C.F., Brown J.W.S., Snape J.W., Worland A.J. The study of grain protein control in wheat using whole chromosome substitution lines. In: Seed protein improvement by nuclear techniques. International Atomic Energy Agency, Vienna, Austria, 1978: 483-502.
  67. Morris C.F., DeMacon V.L., Giroux M.J. Wheat grain hardness among chromosome 5D homozygous recombinant substitution lines using different methods of measurement. Cereal Chem., 1999, 76(2): 249-254 CrossRef
  68. Zhang Y., Liang Z., Zong Y., Wang Y., Liu J., Chen K., Qiu J.-L., Gao C. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nature Communications, 2016, 7: 1261 CrossRef
  69. Veronico P., Giannino D., Melillo M.T., Leone A., Reyes A., Kennedy M.W., Bleve-Zacheo T. A novel lipoxygenase in pea roots. Its function in wounding and biotic stress. Plant Physiol., 2006, 141(3): 1045-1055 CrossRef
  70. Permyakova M.D., Permyakov A.V., Osipova S.V., Pshenichnikova T.A. Prikladnaya biokhimiya i mikrobiologiya, 2012, 48: 1-6 (in Russ.).      
  71. Petrova L.N., Eroshenko F.V. Nauchnyi zhurnal KubGAU, 2006, 24(8): 1-10 (in Russ.).      
  72. Law C.N., Bhandari D.G., Salmon S.E., Greenwell P.W., Foot I.M., Cauvain S.P., Sayers E.J., Worland A.J. Novel genes on chromosome 3A influencing bread making quality in wheat, including a new gene for loaf volume, Lvl 1. J. Cereal Sci., 2005, 41: 317-326 CrossRef
  73. Furtado A., Bundock P.C., Banks P.M., Fox G., Yin X., Henry R.J. A novel highly differentially expressed gene in wheat endosperm associated with bread quality. Scientific Reports, 2015, 5: 10446 CrossRef
  74. Guzmán C., Xiao Y., Crossa J., González-Santoyo H., Huerta J., Singh R., Dreisigacker S. Sources of the highly expressed wheat bread making (wbm) gene in CIMMYT spring wheat germplasm and its effect on processing and bread-making quality. Euphytica, 2016, 209: 689-692 CrossRef
  75. Mitrofanova O.P., Khakimova A.G. Vavilovskii zhurnal genetiki i selektsii, 2016, 20(4): 545-554 CrossRef (in Russ.).       
  76. Hagel I. Sulfur and baking-quality of bread making wheat. Landbauforschung Völkenrode, 2005, Special Issue 283: 23-36.
  77. Morozova E.V., Pshenichnikova T.A., Simonov A.V., Shchukina L.V., Chistyakova A.K., Khlestkina E.K. A comparative study of grain and flour quality parameters among Russian bread wheat cultivars developed in different historical periods and their association with certain molecular markers. Proc. 16th Int. EWAC Conf. (24-29 May, 2015, Lublin, Poland). European Cereal Genetics Cooperative (EWAC) Newsletter (Gatersleben), 2016, 16: 49-56.
  78. Korotkova A.M., Gerasimova S.V., Shumnyi V.K., Khlestkina E.K. Vavilovskii zhurnal genetiki i selektsii, 2017, 21(2): 250-258 CrossRef (in Russ.).