doi: 10.15389/agrobiology.2017.3.487eng

UDC 633.1:58.056:631.523.4:631.527:575.22:51-76

Supported by Russian Foundation for Basic Research under grant № 16-04-199



V.A. Dragavtsev1, I.M. Mikhailenko1, M.A. Proskuryakov2

1Agrophysical Research Institute, Federal Agency of Scientific Organizations, 14, Grazhdanskii prosp., St. Petersburg, 195220 Russia, e-mail, (corresponding author);
2Institute of Botany and Phytointroduction, Science Committee of Kazakhstan Ministry of Education and Science, 36 «D», ul. Timiryazeva, Almaty, 6050040 Republic of Kazakhstan, e-mail

Dragavtsev V.A.
Mikhailenko I.M.

Received March 21, 2017


Improvement of hereditary drought resistance in crops is recently being among the main objectives for food security of humanity because of global warming and the growing costs for bakery and forage grain. Analysis of complex properties of drought resistance in cereals (phenotyping) shows the limitations of a canonical genocentric approach and the approaches based on molecular genetics to solve the problem of significant hereditary improvement of drought resistance. The priority epigenetic approach that we propose is based on the theory of eco-genetic organization of quantitative traits (TEGOQT). In TEGOQT seven genetic-physiological systems (GPS) involved in harvest increasing, but not particular traits of productivity, are to be operated with. These GPS are attractions; micro-distribution of attractive plastic substances between grains and chaff in ear; adaptability to drought, cold, frost, heat, salt, etc; horizontal immunity; «payment» by dry biomass for a limitative factor of soil nutrition — N, P, K, etc; tolerance to plant density in phytocenosis; hereditary variability in duration of the phases of ontogenesis). In this paper we discuss drought adaptability as a part of GPS complex. It is shown that phenotyping evaluation is necessary to analyze drought tolerance, the complex property to which no less than 22 component characters contribute. This allows to construct a set of eco-genetic portraits (EGP) of parent plants at different types of drought simulated in an artificial climate control chamber. The EGP are histograms which reflect the values of all components of drought resistance for each parent thus allowing to select pairs complementary in the elements of the EGP. Based on a predictive EGP, it is possible to define, through mathematical models that reflect the contribution of each component to the resulting drought tolerance, the optimum combination of components for ensuring maximum positive additive effect, and thus to manage selection of the parents for hybridization in view to create new drought resistant varieties.

Keywords: сrop cereals, drought resistance, phenotyping, eco-genetic portraits, management by selection of parental pairs.


Full article (Rus)

Full text (Eng)



  1. Zhuchenko A.A. Ekologicheskaya genetika kul'turnykh rastenii, kak samostoyatel'naya nauchnaya distsiplina. Teoriya i praktika [Ecogenetics of cultivated plants as a specific discipline. Theoretical and practical aspects]. Krasnodar, 2010 (in Russ.).
  2. Levenko B.A. Geneticheski modifitsirovannye (transgennye) rasteniya [Transgenic plants]. Kiev, 2010 (in Russ.).
  3. Vavilov N.I. Zakon gomologicheskikh ryadov v nasledstvennoi izmenchivosti. Izbrannye proizvedeniya. [Law of variability of homologous series. Selected works. V. 1]. Leningrad, 1967. Tom 1: 7-61 (in Russ.).
  4. Monteverde N.A. Botanicheskii atlas [Botanical atlas]. St. Petersburg, 1906 (in Russ.).
  5. Hayman B.I. The theory and analysis of diallel crosses. II. Genetics, 1958, 43(1): 63-85.
  6. Krupnov V.A. Drought and wheat breeding: system approach. Agricultural Biology, 2011, 1: 12-23.
  7. Dekalb — moshchnye korni [Powerful root system characteristic of DEKALB hybrids]. Agrobiznes, 2013, special issue (Grain market): 16-17 (in Russ.).
  8. Pinthus M.G., Eshel Y. Observation on the development of the root system of some wheat varieties. Israel J. Agr. Res., 1962, 12: 13-20.
  9. Zimmerman P.W., Crocker W., Hitchcock A.E. Initiation and stimulation of roots from exposure of plants to carbon monoxide gas. Contrib. Boyce Thompson Inst. (USA), 1933, 5: 1-17.
  10. Sears E.R. The aneuploids of common wheat. Amer. Nat., 1953, 87: 245-252.
  11. Auzemus E.R., Mak-Nil F.Kh., Shmidt Yu.U. V knige: Pshenitsa i ee uluchshenie. [In: Wheat and its improvement]. Moscow, 1970: 250-295 (in Russ.).
  12. Russel M.B. Water and its relation to soil and crops. In: Advances in Agronomy. Academic Press, 1959, V. 11: 1-131 CrossRef
  13. Molinari H.B.C., Marur C.J., Daros E., De Campos M.K.F., De Carvalho J.F.R.P., Filho J.C.B., Pereira L.F.P., Vieira L.G.E. Evaluation of the stress-inducible production in transgenic sugarcane: osmotic adjustment, chlorophyll fluorescence and oxidative stress. Physiologia Plantarum, 2007, 130: 218-226 CrossRef
  14. Kuznetsov V.V., Dmitrieva G.A. Fiziologiya rastenii [Plant physiology].Moscow, 2011 (in Russ.).
  15. Levitt J. The hardiness of plants. V. 6. Agronomy. Academic Press, NY.
  16. Kursanov A.L. Transport assimilyatov v rasteniyakh [Transport of assimilates in plants]. Moscow, 1976 (in Russ.).
  17. Finchem Dzh. Geneticheskaya komplementatsiya [Genetic complementation Moscow, 1968 (in Russ.).
  18. Bonner J. The molecular biology of development. Claredon Press, Oxford, 1965.
  19. Skulachev V.P. Energetika biologicheskikh membrane [Membrane bioenergetics]. Moscow, 1989 (in Russ.).
  20. Maximov N.A. Internal factors of frost and drought resistance in plants. Protoplasma, 1929, 7: 259-291.
  21. Medvedev S.S. Fiziologiya rastenii [Plant physiology]. St. Petersburg, 2004 (in Russ.).
  22. Ort D.R., Long S.P. Botany. Limits on yields in the corn belt. Science, 2014, 344: 484-485 CrossRef
  23. Dragavtsev V.A. Algorithms of an ecology-genetic survey of the genefund and methods of creating the varieties of crop plants for yield, resistance and quality. St. Petersburg, 2002.
  24. Chen D., Neumann K., Friedel S., Kilian B., Chen M., Altmann T., Klukas C. Dissecting the phenotypic components of crop plant growth and drought responses based on high-throughput image analysis. Plant Cell, 2014, 26: 4636-4655 CrossRef
  25. Udol'skaya N.L. Zasukhoustoichivost' sortov yarovoi pshenitsy [Drought tolerance in spring wheat varieties]. Moscow, 1936 (in Russ.).
  26. Dragavtsev V.A. V sbornike: Faktory eksperimental'noi evolyutsii organizmov. Tom 12 [In: Factors of experimental evolution. V. 12]. Kiev, 2013: 38-41 (in Russ.).
  27. Vavilov N.I. Izbrannye trudy. Tom 5 [Selected works. V. 5]. Moscow-Leningrad, 1965 (in Russ.).
  28. Dragavtsev V.A. Biosfera, 2013, 5(3): 279-290 (in Russ.).
  29. Stent G. Molekulyarnaya genetika [Molecular genetics]. Moscow, 1974 (in Russ.).
  30. Lutova L.A. Materialy Vserossiiskoi Shkoly molodakh uchenykh po ekologicheskoi genetike [Proc. All-Russian Scientific School of young scientist on ecogenetics]. Krasnodar, 2011: 82-100 (in Russ.).
  31. Sabinin D.A. Fiziologiya razvitiya rastenii [Physiology of plant development]. Moscow, 1963 (in Russ.). 
  32. Kocherina N.V., Dragavtsev V.A. Vvedenie v teoriyu ekologo-geneticheskoi organizatsii poligennykh priznakov rastenii i teoriyu selektsionnykh indeksov [Introduction to the theory of ecogenetic control of traits and the theory of plant breeding indices]. St. Petersburg, 2008 (in Russ.). 
  33. Litun P.P., Zozulya A.L., Dragavtsev V.A. Selektsiya i semenovodstvo (Kiev), 1986, 61: 6-13 (in Russ.). 
  34. Dragavtsev V.A., Pesek J. Estimation of genotypic and environmental variation in plants. Basic life science (Encyclopaedia). V. 8. Plenum Press, NY-London, 1977: 233-240.
  35. Dragavtsev V.A. K probleme geneticheskogo analiza poligennykh kolichestvennykh priznakov rastenii [Toward the problem of analysis of polygenic quantitative traits in plants]. St. Petersburg, 2003 (in Russ.). 
  36. Kuznetsov V.V., Shevyakova N.I. Fiziologiya rastenii, 1999, 46(2): 321-336 (in Russ.). 
  37. Yamada M., Morishita C., Urano K. Effects of free proline accumulation in petunia under drought stress. J. Exp. Bot., 2005, 56: 1975-1981 CrossRef
  38. Mikhailenko I.M., Dragavtsev V.A. Mathematical modelling in plant breeding. I. Theoretical basis of genotypes identification on their phenotypes during selection in segregating generations. Agricultural Biology, 2013, 1: 26-34 CrossRef
  39. Dragavtsev V.A., Maletskii S.I. Biosfera, 2016, 8(2): 143-150 (in Russ.). 
  40. Dragavtsev V.A., D'yakov A.B. V sbornike: Fenetika populyatsii [Phenetics of populations]. Moscow, 1982: 30-37 (in Russ.). 
  41. Dragavtsev V.A. Ekologo-geneticheskii skrining genofonda i metody konstruirovaniya sortov sel'skokhozyaistvennykh rastenii po urozhainosti, ustoichivosti i kachestvu (novye podkhody) [Ecogenetic screening of gene pools and a design of varieties on yield, tolerance and quality parameters: an innovative approach]. St. Petersburg, 1998 (in Russ.). 
  42. Mikhailenko I.M., Dragavtsev V.A. Mathematical modelling in plant breeding. II. Algorithms for control of genetic-breeding improvement of economically valuable properties in self-pollinators. Agricultural Biology, 2013, 1: 35-41 CrossRef
  43. Dragavtsev V.A., Aver'yanova A.F. Genetika, 1979, 15(3): 518-526 (in Russ.). 
  44. Dragavtsev V.A. Biosfera, 2012, 4(3): 251-262 (in Russ.). 
  45. Araus J.L., Slafer G.A., Reynolds M.P., Royo C. Plant breeding and drought in C3 cereals: what should we breed for? Ann. Bot., 2002, 89: 925-940.
  46. Berger B., Parent B., Tester M. High-throughput shoot imaging to study drought responses. J. Exp. Bot., 2010, 61: 3519-3528 CrossRef
  47. Dhondt S., Wuyts N., Inze D. Cell to whole-plant phenotyping: the best is yet to come. Trends Plant Sci., 2013, 18: 428-439 CrossRef
  48. Florani F., Schurr U. Future scenarios for plant phenotyping. Annu. Rev. Plant Biol., 2013, 64: 267-291 CrossRef
  49. Klukas C., Chen D., Pape J.M. Integrated analysis platform: an open source information system for high-throughput plant phenotyping. Plant Physiol., 2014, 165: 506-518 CrossRef
  50. Sellammal R., Robin S., Raveendran M. Association and heritability studies for drought resistance under varied moisture stress regimes in backcross inbred population of rise.  Rice Sci., 2014, 21: 150-161 CrossRef
  51. Sozzani R., Benfey P.N. High-throughput phenotyping of multicellular organisms: finding the link between genotype and phenotype. Genome Biology, 2011, 12: 219 CrossRef
  52. Xiong L., Wang R.G., Mao G., Koczan J.M. Identification of drought tolerance determinants by genetic analysis of root response to drought stress and abscisic acid. Plant Physiol., 2006, 142: 1065-1074 CrossRef
  53. Tuberosa R. Phenotyping for drought tolerance of crops in the genomics era. Front. Physiol. 2012. Vol. 3: 347 CrossRef
  54. Furbank R.T., Tester M. Phenomics — technologies to relieve the phenotyping bottleneck. Trends Plant Sci., 2011, 16(12): 635-644 CrossRef