doi: 10.15389/agrobiology.2017.3.429eng

UDC 631/635:631.58:551.5:57.087

Acknowledgements:
Supported in part by grant from Russian Foundation for Basic Research
(№ 16-04-00311-а).

ACTUAL PHYSICAL, AGRONOMIC, GENETICAL AND BREEDING
ASPECTS IN AGROBIOLOGICAL MANAGEMENT
(towards 85 Anniversary of Agrophysical Research Institute, Russia)

I.B. Uskov, V.P. Yakushev, Yu.V. Chesnokov

Agrophysical Research Institute, Federal Agency of Scientific Organizations, 14, Grazhdanskii prosp., St. Petersburg, 195220 Russia,
e-mail yuv_chesnokov@agrophys.ru (corresponding author)

ORCID:
Uskov I.B. orcid.org/0000-0003-2990-978х
Yakushev V.P. orcid.org/0000-0002-0013-0484
Chesnokov Yu.V. orcid.org/0000-0002-1134-0292

Received March 28, 2017

 

This overview dedicated to 85 anniversary of Agrophysical Research Institute gives a retrospective of agrophysics formation as a specific research field covering investigation of physical, agronomical and biological factors to control agroecological systems. The article describes achievement in physics, mathematics, biology and pedology that ensured transition from a descriptive agronomy to the agronomy based on evaluation of the factors essential for plant grow and development, on plant productivity calculation, and on managing productivity of crops by special agrotechnologies. The development of IT communication and precision agricultural technics equipped with detectors of global targeting system, specific sensors and software, as well as the use of geographic information systems led to a new conception of plant yield control, i.e. a precision agriculture. Our researches are focused on computer-aided design and realization of precise agrotechnologies in field conditions. Further progress in plant growing seems to be due to modern genetic and breeding allowing to improve precision agriculture both for populations and individual plants influenced by different ecogeographic conditions. Recent approaches in genetics can speed up breeding new varieties for specific use in precision agriculture. In two experiments which differed only in temperature and illumination regimes under invariability of other parameters, 99 QTL determining 30 agronomically important traits have been identified in spring soft wheat. According to QTL mapping and ANOVA, changes in the temperature and illumination regimes did not influence 21 of 30 studied traits, which remained stable in manifestation. Only nine traits varied under tested conditions, indicating their manifestation to depend on these environmental factors. Elucidation of the QTL effects allows further analysis of the identified correlations and interaction between QTL and environment under natural conditions. In turn, these data allow to provide expression of certain genetic determinants which control physiological basis for economically valuable traits in specific ecogeographic conditions.

Keywords:agrophysics, physics of soil, pedology, precision agriculture, factors of plant growth, physiology and biochemistry of productivity, breeding and genetic analysis.

 

Full article (Rus)

Full text (Eng)

 

REFERENCES

  1. Uskov I.B. Agrofizika ot A.F. Ioffe do nashikh dnei [Agrophysics: since A.F. Ioffe to present days]. St. Petersburg, 2002 (in Russ.).
  2. Ioffe A.F. Fizika i sel'skoe khozyaistvo [Physics and agriculture]. Moscow-Leningrad, 1955 (in Russ.).
  3. Moshkov B.S. Fotoperiodizm rastenii [Photoperiodism in plants]. Moscow, 1961 (in Russ.).
  4. Batygin N.F., Savin V.N. Ispol'zovanie ioniziruyushchikh izluchenii v rastenievodstve [Ionizing radiation in plant growing]. Leningrad, 1966 (in Russ.).
  5. Poluektov R.A. Materialy Mezhdunarodnoi nauchno-prakticheskoi konferentsii
    «
    Agrofizika XXI veka» (k 70-letiyu obrazovaniya Agrofizicheskogo instituta). St. Petersburg, 2000: 223-227 (in Russ.).
  6. Vershinin P.V. Pochvennaya struktura i usloviya ee formirovaniya [Soil structure and formation]. Moscow-Leningrad, 1958 (in Russ.).
  7. Nerpin S.V., Chudnovskii A.F. Fizika pochv [Soil physics]. Moscow, 1967 (in Russ.).
  8. Kurtener D.A., Uskov I.B. Klimaticheskie faktory i teplovoi rezhim v otkrytom i zashchishchennom grunte [Climatic factors and temperature in field conditions and greenhouses]. Leningrad, 1982 (in Russ.).
  9. Kurtener D.A., Uskov I.B. Upravlenie mikroklimatom sel'skokhozyaistvennykh polei [Field microclimate control].Leningrad, 1988 (in Russ.).
  10. Nerpin S.V., Chudnovskii A.F. Energo- i massoobmen v sisteme rastenie—pochva—vozdukh [Energy and mass transfer in plantsoilair system]. Leningrad, 1975.
  11. Poluektov R.A. Dinamicheskie modeli agroekosistemy. Leningrad, 1991 (in Russ.).
  12. Moshkov B.S., Sudakov V.L., Klochkova M.P., Drozdov V.N., Fekhretdinov A.F. Rossiiskaya sel'skokhozyaistvennaya nauka, 1984, 4: 13-16 (in Russ.).
  13. Kotovich I.N., Masaitis G.V., Pashchenko T.E. Polimernye plenki dlya vyrashchivaniya i khraneniya plodov i ovoshchei. [Polymer films for growing plants and storage of vegetables and fruits]. Moscow, 1985 (in Russ.).
  14. Panova G.G., Ktitorova I.N., Skobeleva O.V., Sinjavina N.G., Charyk-
    ov N.A., Semenov K.N. Impact of polyhydroxy fullerene (fullerol or fullerenol) on growth and biophysical characteristics of barley seedlings in favourable and stressful conditions. Plant Growth Regul., 2016, 79: 309-317 CrossRef
  15. Chudnovskii A.F., Shlimovich B.M. Poluprovodnikovye pribory v sel'skom khozyaistve [Semiconductor devices in agriculture]. Leningrad, 1970 (in Russ.).
  16. Ermakov E.I., Panova G.G. Rossiiskayasel'skokhozyaistvennayanauka, 2000, 5: 18-21 (in Russ.).
  17. Ermakov E.I., Panova G.G., Stepanova O.A. Strategy of biological reclamation of chemically polluted ecosystems. Russian Journal of Ecology, 2005, 36(3): 171-178 CrossRef
  18. Poluektov R.A. Vestnik rossiiskoi sel'skokhozyaistvennoi nauki, 2002, 2: 25-28 (in Russ.).
  19. Poluektov R.A., Zakharova E.T. Two approaches to the description of distribution keys in crop simulation models. International Agrophysics (Lublin), 2000, 14: 99-104.
  20. Yakushev V.P., Osipov A.I., Minnulin R.M., Voskresenskii S.V. Agrofizika, 2013, 2(10): 18-22 (in Russ.).
  21. Yakushev V.P. Na puti k tochnomu zemledeliyu [Towards precision agriculture]. St. Petersburg, 2002 (in Russ.).
  22. Yakushev V.P., Lekomtsev P.V., Petrushin A.F. Informatsiya i kosmos, 2014, 3: 50-56 (in Russ.).
  23. Yakushev V.P., Konev A.V., Yakushev V.V. Informatsiya i kosmos, 2015, 3: 96-101 (in Russ.).
  24. Yakushev V.P., Lekomtsev P.V., Pervak T.S., Voropaev V.V. Agrofizika, 2016, 1: 43-52 (in Russ.).
  25. Kumar J., Gupta D.S., Gupta S., Dubey S., Gupta P., Kumar S. Quantitative trait loci from identification to exploitation for crop improvement. Plant Cell Rep., 2017: 1-27 CrossRef
  26. Frary A., Nesbitt T., Grandillo S., Knaap E., Cong B., Liu J., Meller J., Elber R., Alpert K.B., Tanksley S.D. Fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science, 2000, 289: 85-88 CrossRef
  27. Chesnokov Yu.V., Pochepnya N.V., Kozlenko L.V., Sitnikov M.N., Mitrofanova O.P., Syukov V.V., Kochetkov D.V., Lohwasser U., Börner A. Mapping of QTLs determining the expression of agronomically and economically valuable features in spring wheat (Triticum aestivum L.) grown in environmentally different Russian regions. Russian Journal of Genetics: Applied Research, 2013, 3(3): 209-221 CrossRef
  28. Batalova G.A., Rusakova I.I., Kocherina N.V., Lovasser U., Berner A., Chesnokov Yu.V. Otsenka linii ITMI i kartirovanie QTL u yarovoi myagkoi pshenitsy (Triticum aestivum L.) v usloviyakh Severo-Vostoka Rossiiskoi Federatsii [Spring wheat (Triticum aestivum L.) line ITMIestimation and QTL mappingin the north-east Russia]. Kirov, 2016 (in Russ.).
  29. Artem'eva A.M., Volkova A.I., Kocherina N.V., Chesnokov Yu.V. Izvestiya Sankt-Peterburgskogo gosudarstvennogo agrarnogo universiteta, 2012, 27: 73-77 (in Russ.).
  30. Artemyeva A.M., Solovjova A.E., Kocherina N.V., Berensen F.A., Rudneva E.N., Chesnokov Yu.V. Mapping of chromosome loci determined manifestation of morphological and biochemical traits of quality in Brassica rapa L. crops. Russian Journal of Plant Physiology, 2016, 63(2): 259-272 CrossRef
  31. Ermakov E.I., Makarova G.A., Nerusheva G.V. Programmirovannoe poluchenie v reguliruemoi agroekosisteme transgressivnykh po sroku kolosheniya linii pshenitsy. Metodicheskie rekomendatsii [Creation of transgressive wheat lines with programmed time of earing in a controlled agroecosystem]. St. Petersburg, 2002 (in Russ.).
  32. Panova G.G., Dragavtsev V.A., Kanash E.V., Arkhipov M.V., Chernousov I.N. Agrofizika, 2011, 1: 29-37 (in Russ.).
  33. El-Soda M., Malosetti M., Zwaan B.J., Koornneef M., Aarts M.G. Genotype × environment interaction QTL mapping in plants: lessons from Arabidopsis. Trends in Plant Science, 2014, 19(6): 390-398 CrossRef
  34. Chesnokov Yu.V., Mirskaya G.V., Kanash E.V., Kocherina N.V., Lohwasser U., Börner A. QTL mapping of bread wheat (Triticum aestivum L.) grown under controlled conditions of an agroecobiological testing ground. Russian Journal of Plant Physiology, 2017, 64(1): 55-68 CrossRef
  35. Zhuchenko A.A. Adaptivnoe rastenievodstvo (ekologo-geneticheskie osnovy) [Adaptive plant growing — ecogenetic bases]. Kishinev, 1990 (in Russ.).
  36. Zhuchenko A.A. Adaptivnoe rastenievodstvo (ekologo-geneticheskie osnovy). Teoriya i praktika [Adaptive plant growing — ecogenetic bases. Fundamental and practical aspects]. Moscow, 2008 (in Russ.).

back