doi: 10.15389/agrobiology.2017.3.437eng

UDC 631.4/.9:51-76:519.876.5



V.L. Badenko1, A.G. Topaj1, V.V. Yakushev1, W. Mirschel2, C. Nendel2

1Agrophysical Research Institute, Federal Agency of Scientific Organizations, 14, Grazhdanskii prosp., St. Petersburg, 195220 Russia, e-mail (corresponding author),,;
2Leibniz-Centre for Agricultural Landscape Research (ZALF),15374 Müncheberg, Eberswalder Str. 84,Germany, e-mail,

Badenko V.L.
Topaj A.G.
Yakushev V.V.
Mirschel W.
Nendel  C.

Received March 28, 2017


Mechanistic (eco-physiological), or process-oriented, approach to simulation modeling of the production process of plants assumes considering the essences of processes and cause-effect relationships in the agroecosystem with a description of their dynamics based on physically interpreted dependencies (as opposed to logically interpreted dependencies at the empirical approach) (A. Di Paola et al., 2016; R.A. Poluektov, 2010). The analysis of the possible use of dynamic simulation models of agro-ecosystems in the mechanistic nature of applied and theoretical research of agricultural biology is presented. The current practice of the development and usage of these models shows their highest suitability for research purposes in comparison to the potential usefulness and relevance to the practical problems of agronomy. Specific examples of model applications demonstrate the possibility of computer-based model experiments to get nontrivial results, which are not directly incorporated into the logic of the model algorithms (V. Badenko et al., 2014; S. Medvedev et al., 2015). The role of simulation model as a tool of obtaining new knowledge and interpretation of the empirically observed phenomena has been showed. To demonstrate the potentials of simulation models for agricultural biology, some results of authors' studies have been reviewed, including analyze of the appearance of a non-monotonic response function of crop yield on the doses of nitrogen fertilizer, the results of computer experiments on interpretation of the effect of the time delay during management of nitrogen feeding «on the leaf», and the joint impact of combined water and nitrogen stresses. Based on analysis of recent publications, conclusions of perspectives of models application to accelerate the plant breeding process were justified. It is concluded, i) further «biologization» of existing models is a prerequisite for a successful development of the dynamic crop growth modeling, and ii) it is necessary to increase the level of scientific validity of model approaches, which are used to describe the biotic processes in the soil—plant—atmosphere system.

Keywords: agro-ecosystems simulation model, crop production process, mechanistic approach, ideotype, plant breeding, breeding, G×E×M-oriented models.


Full article (Rus)

Full text (Eng)



  1. Di Paola A., Valentini R., Santini M. An overview of available crop growth and yield models for studies and assessments in agriculture. J. Sci. Food Agr., 2016, 96(3): 709-714 CrossRef
  2. Poluektov R.A. Materialy Vserossiiskoi konerentsii «Matematicheskie modeli i informatsionnye tekhnologii v sel'skokhozyaistvennoi biologii: itogi i perspektivy». [Proc. Conf. «Mathematical modeling and IT in agricultural biology: advances and perspectives]. St. Petersburg, 2010: 9-13 (in Russ.).
  3. Frans D., Tornli D. Matematicheskie modeli v sel'skom khozyaistve [Mathematical modeling in agriculture]. Moscow, 1987 (in Russ.).
  4. Medvedev S., Topaj A. Crop simulation model registrator and polyvariant analysis. In: IFIP Advances in Information and Communication Technology. Springer, Berlin, Heidelberg, 2011, V. 359: 295-301 CrossRef
  5. Mirschel W., Wenkel K.O. Modelling soil—crop interactions with AGROSIM model family In: Modelling water and nutrient dynamics in soil—crop systems. Springer Netherlands, 2007: 59-73 CrossRef
  6. Poluektov R.A. Dinamicheskie modeli agroekosistemy [Dynamic models of agroecosystem]. Leningrad, 1991 (in Russ.).
  7. Sinclair T.M., Seligman N.G. Crop modelling: From infancy to maturity. Agron. J., 1996, 88: 698-704 CrossRef
  8. Affholder F., Tittonell P., Corbeels M., Roux S., Motisi N., Tixier P., Wery J. Ad hoc modeling in agronomy: what have we learned in the last 15 years? Agron. J., 2012, 104: 735-748 CrossRef
  9. Marin F., Jones J.W., Boote K.J. A stochastic method for crop models: including uncertainty in a sugarcane model. Agron. J., 2017, 109(2): 483-495 CrossRef
  10. Topazh A.G.V sbornike: Matematicheskie modeli prirodnykh i antropogennykh ekosistem [In: Mathematical models of natural and anthropogenic ecosystems]. St. Petersburg, 2014: 48-69 (in Russ.).
  11. Yakushev V.V. Tochnoe zemledelie: teoriya i praktika [Precision agriculture: fundamental and practical aspects]. St. Petersburg, 2016 (in Russ.).
  12. Montemurro F., Convertini G., Ferri D. Nitrogen application in winter wheat grown in Mediterranean conditions: effects on nitrogen uptake, utilization efficiency, and soil nitrogen deficit. J. Plant Nutr., 2007, 30(10): 1681-1703 CrossRef
  13. Maphosa L., Langridge P., Taylor H., Emebiri L., Mather D. Genetic control of grain protein, dough rheology traits and loaf traits in a bread wheat population grown in three environments. J. Cereal Sci., 2015, 64: 147-152 CrossRef
  14. Tumusiime E., Brorsen B.W., Mosali J., Johnson J., Locke J., Biermacher J.T. Determining optimal levels of nitrogen fertilizer using random parameter models. Journal of Agricultural and Applied Economics, 2011, 43(4): 541-552 CrossRef
  15. Boldea M., Sala F., Rawashdeh H., Luchian D. Evaluation of agricultural yield in relation to the doses of mineral fertilizers. Journal of Central European Agriculture, 2015, 16(2): 149-161 CrossRef
  16. Malone R.W., Kersebaum K.C., Kaspar T.C., Ma L., Jaynes D.B., Gillette K. Winter rye as a cover crop reduces nitrate loss to subsurface drainage as simulated by HERMES. Agr. Water Manage., 2017, 184: 156-169 CrossRef
  17. Badenko V., Terleev V., Topaj A. AGROTOOL software as an intellectual core of decision support systems in computer aided agriculture. Appl. Mech. Mater., 2014, 635-637: 1688-1691 CrossRef
  18. Medvedev S., Topaj A., Badenko V., Terleev V. Medium-term analysis of agroecosystem sustainability under different land use practices by means of dynamic crop simulation. In: IFIP Advances in information and communication technology. Springer, Berlin, Heidelberg, 2015, V. 448: 252-261 CrossRef
  19. Leinikh P.A. Materialy reg. soveshchaniya nauchn. uchrezhdenii — uchastnikov Geoseti Severo-Vostochnogo i Ural'skogo regionov [Proc. of North-East and Ural Geonet Workshop, Russia]. Perm', 2013: 51-54 (in Russ.).
  20. Nendel C., Berg M., Kersebaum K.C., Mirschel W., Specka X., Wegeh-
    enkel M., Wenkel K.O., Wieland R. The MONICA model: Testing predictability for crop growth, soil moisture and nitrogen dynamics. Ecological Modeling, 2007, 222(9): 1614-1625 CrossRef
  21. Lobell D.B., Schlenker W., Costa-Roberts J. Climate trends and global crop production since 1980. Science, 2011, 333: 616-620 CrossRef
  22. Zhuchenko A.A. Present and future of adaptive selection and seed breeding based on identification and systematization of plant genetic resources.Agricultural Biology, 2012, 5: 3-19 CrossRef (in Russ.).
  23. Kissoudis Ch., van de Wiel C., Visser R.G., van der Linden G. Future-proof crops: challenges and strategies for climate resilience improvement. Curr. Opin. Plant Biol., 2016, 30: 47-56 CrossRef
  24. Novoselov S.N. Politematicheskii setevoi elektronnyi nauchnyi zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta, 2006, 24: 308-319 (in Russ.).
  25. Suriharn B., Patanothai A., Boote K.J., Hoogenboom G. Designing a peanut ideotypefor a target environment using the CSM-CROPGRO-Peanut Model. Crop Sci., 2011, 51(5): 1887-1902 CrossRef
  26. Spitsyn I.I., Spitsyn D.I. Vestnik Tambovskogo universiteta. Seriya: Estestvennye i tekhnicheskie nauki, 2003, 8(1): 78-79 (in Russ.).
  27. Kornilov B.B., Dolmatov E.A. Selektsiya i sortorazvedenie sadovykh kul'tur, 2016, 3: 71-74 (in Russ.).
  28. Ramirez-Villegas J., Watson J., Challinor A.J. Identifying traits for genotypic adaptation using crop models. J. Exp. Bot., 2015, 66(12): 3451-3462 CrossRef
  29. Rötter R.P., Tao F., Höhn J.G., Palosuo T. Use of crop simulation modelling to aid ideotype design of future cereal cultivars. J. Exp. Bot., 2015, 66(12): 3463-3476 CrossRef
  30. Jeuffroy M.-H., Casadebaig P., Debaeke P., Loyce C., Meynard J.-M. Agronomic model uses to predict cultivar performance in various environments and cropping systems. A review. Agron. Sustain. Dev., 2014, 34(1): 121-137 CrossRef
  31. Nendel C., Kersebaum K.C., Mirschel W., Wenkel K.O. Testing farm management options as climate change adaptation strategies using the MONICA model. Eur. J. Agron., 2014, 52: 47-56 CrossRef
  32. Semenov M.A., Stratonovitch P. Adapting wheat ideotypes for climate change: Accounting for uncertainties in CMIP5 climate projections. Clim. Res., 2015, 65: 123-139 CrossRef
  33. Angulo C., Rötter R., Lock R., Enders A., Fronzek S., Ewert F. Implication of crop model calibration strategies for assessing regional impacts of climate change in Europe. Agr. Forest Meteorol., 2013, 170: 32-46 CrossRef
  34. Badenko V., Kurtener D., Yakushev V., Torbert A., Badenko G. Evaluation of current state of agricultural land using problem-oriented fuzzy indicators in GIS environment. Lect. Notes Comput. Sc., 2016, 9788: 57-69 CrossRef
  35. Biernath C., Gayler S., Bittner S., Klein C., Högy P., Fangmeier A., Priesack E. Evaluating the ability of four crop models to predict different environmental impacts on spring wheat grown in open-top chambers. Eur. J. Agron., 2011, 35(2): 71-82 CrossRef
  36. Specka X., Nendel C., Wieland R. Analysing the parameter sensitivity of the agro-ecosystem model MONICA for different crops. European Journal of Agronomy, 2015, 71: 73-87 CrossRef
  37. Hammer G.L., McLean G., Chapman S., Zheng B., Doherty A., Harrison M.T., Van Oosterom E., Jordan D. Crop design for specific adaptation in variable dryland production environments. Crop and Pasture Science, 2014, 65(7): 614-626 CrossRef
  38. Technow F., Messina C.D., Totir L.R., Coope M. Integrating crop growth models with whole genome prediction. PLoS ONE, 2015, 10(6): e0130855 CrossRef
  39. Hoogenboom G., White J.W., Messina C.D. From genome to crop: integration through simulation modeling. Field Crops Res., 2004, 90: 145-163 CrossRef