doi: 10.15389/agrobiology.2016.3.360eng

UDC 635.21:581.4:58.037



N.V. Statsyuk1, K. Thakur2, T.I. Smetanina1, M.A. Kuznetsova1

1All-Russian Research Institute of Phytopathology, Federal Agency of Scientific Organizations, 5, ul. Institute, pos. Bol’shie Vyazemy, Odintsovskii Region, Moscow Province, 143050 Russia, e-mail,;
2Tuberosum Technologies Inc., Broderick, SK, S0H 0L0 Canada, e-mail

Received March 4, 2016


In spite of high biological potential demonstrated in field trials, many potato cultivars did not show a full productivity at a large-scale production that can be caused by both external (cultivation conditions) and internal (quality and adaptive potential of seed material) factors. To date, a number of seed-stimulating technologies based on the use of the laser, ultrasound, cold plasma, magnetic and electromagnetic fields have been developed. A pre-planting treatment of seeds with low-frequency pulse electric field (LF-PEF) was proved to have a positive effect on the seed qualities and productivity of some agricultural crops including lettuce, parsley, red beet, and carrot. However, the mechanisms of this effect still remain unclear. In this study we assessed the response of 13 different potato varieties to the LF-PEF treatment on several morphometric traits. The study was carried out at three geographical points: Tuberosum Technologies LLC (Saskachewan, Canada, 2009, 11 varieties of different reproductions used for the baby potato production), the field of All-Russian Research Institute of Phytopathology (ARRIP, Moscow Province, 2011; variety Saturna), and Ozery LLC (Moscow Province, 2012; variety Lady Clair). For each variety, 20 kg (Tuberosum Technologies), 200 kg (ARRIP), and 2 tons (Ozery) of seed potato were treated 3-5 days prior the planting using an experimental LF-PEF generator developed by the Intelpro LLC (Russia). Generated electric field was characterized by a broadband frequency range and had the following parameters: carrier frequency 16±10 kHz, repetition rate of the modulating pulse pattern 200 Hz, generated field intensity 20 kV/m. According to the earlier optimized mode, the seed potato was exposed to LF-PEF for 24 h. Protective treatments with fungicides were the same for both treated and untreated plants used as control. Plant height, number of stems per plant, number of leaves per stem, fresh weight of above-ground parts, and the number and total weight of tubers per plant were measured at flowering; each variant (control or treatment) included 10 plants in four repetitions. For the majority of the studied varieties, the LF-PEF treatment did not significantly influence on plant height, number of leaves per stem, and fresh weight of above-ground parts of plants. At the same time, the number of stems per plant and the number and weight of tubers per a plant increased; the revealed changes were reliable and significant for the majority of varieties (80-95 %). The variety-averaged increase in the number of stems and the number and weight of tubers per plant made 27.0, 28.3 и 31.1 %, respectively, as compared to the control. The obtained data agree with the results of our earlier large-scale trials of the LF-PEF technology arranged in different regions of Russia. 

Keywords: potato, low-frequency pulse electric field, morphometric traits, pre-planting treatment, crop capacity.


Full article (Rus)

Full text (Eng)



  1. FAOSTAT data. Available: [Accessed 28 March 2016].
  2. Torikov V.E., Bogomaz O.A. Vestnik Bryanskoi gosudarstvennoi sel'skokhozyaistvennoi akademii, 2008, 4: 53-59 (in Russ.).
  3. Galeev R.R. Vestnik Altaiskogo gosudarstvennogo agrarnogo universiteta, 2011, 4(78): 5-9 (in Russ.).
  4. Ivanyuk V.G., Banadysev S.A., Zhuromskii G.K. Zashchita kartofelya ot boleznei, vreditelei i sornyakov Potato plant protection against diseases, pests and weeds]. Minsk, 2005 (in Russ.).
  5. Prusakova L.D., Malevannaya N.N., Belopukhov S.L., Vakulenko V.V. Agrokhimiya, 2005, 11: 76-86 (in Russ.).
  6. Spirov G.M., Valueva Yu.V., Merkulova V.G., Medvedeva L.N., Luk'yanov N.B., Zaitsev A.S. Uspekhi sovremennogo estestvoznaniya, 2008, 6: 30-38 (in Russ.).
  7. Reed M.L.E., Glick B.R. Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek, 2004, 86: 1-25 CrossRef
  8. Marinkovic B., Grujic M., Marinkovic D., Crnobarac J., Marinkovic J., Jacimovic G., Mircov D.V. Use of biophysical methods to improve yields and quality of agricultural products. Journal of Agricultural Sciences, 2008, 53(3): 235-242.
  9. Aladjadjiyan A. Physical factors for plant growth stimulation improve food quality. In: Food production — approaches, challenges and tasks. A. Aladjadjiyan (ed.). Rijeka, InTech, 2012: 145-168 CrossRef
  10. Goussous S.J., Samarah N.H., Alqudah A.M., Othman M.O. Enhancing seed germination of four crop species using an ultrasonic technique. Exp. Agr., 2010, 46(2): 231-242 CrossRef
  11. Hernandez A.C., Dominguez P.A., Cruz O.A., Ivanov R., Carballo C.A., Zepeda B.R. Laser in agriculture. Int. Agrophys., 2010, 24(4): 407-422.
  12. Bilalis D.J., Katsenios N., Efthimiadou A., Karkanis A., Khah E.M., Mitsis T. Magnetic field pre-sowing treatment as an organic friendly technique to promote plant growth and chemical elements accumulation in early stages of cotton. Australian Journal of Crop Sciences, 2013, 7(1): 46-50.
  13. Maffei M.E. Magnetic field effects on plant growth, development, and evolution. Front. Plant Sci., 2014, 5: 445 CrossRef
  14. Maslobrod S.N., Korletyanu L.B., Ganya A.I. Elektronnaya obrabotka materialov, 2010, 5: 93-105 (in Russ.).
  15. Yang L., Shen H. Effect of electrostatic field on seed germination and seedling growth of Sorbus pohuashanesis. Journal of Forestry Research, 2011, 22(1): 27-34 ( CrossRef
  16. Mihai A.L., Dobrin D., Magureanu M., Popa M.E. Positive effects of non-thermal plasma treatment on radish seeds. Romanian Reports in Physics, 2014, 66(4): 1110-1117.
  17. Jiang J., He X., Li L., Li J., Shao H., Xu Q., Ye R., Dong Y. Effect of cold plasma treatment on seed germination and growth of wheat. Plasma Science and Technology, 2014, 16(1): 54-58 CrossRef
  18. Radhakrishnan R., Kumari B.D.R. Pulsed magnetic field: a contemporary approach offers to enhance plant growth and yield of soybean. Plant Physiol. Bioch., 2012, 51: 139-144 CrossRef
  19. Jedlicka J., Paulen O., Ailer Š. Influence of magnetic field on germination, growth and production of tomato. Potravinarstvo, 2014, 8(1): 150-154 ( CrossRef
  20. Yan D.-L., Guo Y.-Q., Zai X.-M., Wan S.-W., Qin P. Effects of electromagnetic fields exposure on rapid micropropagation of beach plum (Prunus maritima). Ecol. Eng., 2009, 35: 597-601 CrossRef
  21. Mahmood M., Bee O.B., Mahmud T., Subramaniam S. The growth and biochemical responses on in vitro cultures of Oncidium taka orchid to electromagnetic field. Australian Journal of Crop Science, 2011, 5(12): 1577-1587.
  22. Molamofrad F., Lotfi M., Khazaei J., Tavakkol-Afshari R., Shaiegani-Akmal A. The effect of electric field on seed germination and growth parameters of onion seeds (Allium cepa). Advanced Crop Science, 2013, 3(4): 291-298.
  23. Kurbakov E.L. Effektivnost' novykh elementov tekhnologii vyrashchivaniya salata v Nechernozemnoi zone Rossii. Avtoreferat kandidatskoi dissertatsii [Effectiveness of novel cultivation elements on salad in the Russian Non-chernozem zone. PhD Thesis]. Moscow, 2007 (in Russ.).
  24. Kurbakova O.V. Povyshenie posevnykh kachestv semyan morkovi stolovoi (Daucus carota L.), ukropa pakhuchego (Anethum graveolens L.) v usloviyakh Nechernozemnoi zony Rossii. Avtoreferat kandidatskoi dissrtatsii [The increase of seed viability in carrot (Daucus carota L.) and dill (Anethum graveolens L.) in the Russian Non-chernozem zone. PhD Thesis]. Moscow, 2011 (in Russ.).
  25. Potekhin G.A. Otsenka i otbor iskhodnogo materiala petrushki (Petroselinum crispum (Mill.) Nym.) dlya selektsii na produktivnost' i kachestvo i razrabotka elementov tekhnologii povysheniya posevnykh kachestv semyan. Avtoreferat kandidatskoi dissrtatsii [Evaluation and selection of parental parsley (Petroselinum crispum (Mill.) Nym.) plants for crop yield and quality breeding, and the methods to increase seed viability. PhD Thesis]. Moscow, 2011 (in Russ.).
  26. Statsyuk N.V., Kuznetsova M.A., Filippov A.V., Eliseeva L.G. Sakhar, 2014, 10: 38-40 (in Russ.).
  27. Kuznetsova M.A. Obosnovanie primeneniya nekotorykh biologicheski aktivnykh preparatov i sredstv dlya zashchity kartofelya ot fitoftoroza. Kandidatskaya dissertatsiya [Founded use of certain biologacals and agents to protect potatoes from late blight. PhD Thesis]. Moscow, 2000 (in Russ.).
  28. Savitskaya N.G. Povyshenie tovarnogo kachestva, pishchevoi tsennosti i sokhrannosti ovoshchnoi produktsii putem obrabotki ee nizkochastotnym elektricheskim polem. Kandidatskaya dissertatsiya [Increasing commercial quality, nutritional value and safety of vegetable production using low-frequency electric field treating. PhD Thesis]. Moscow, 2001 (in Russ.).
  29. Statsyuk N.V., Kuznetsova M.A., Rogozhin A.N., Filippov A.V. Biotika, 2015, 3(4): 10-12 (in Russ.).
  30. Statsyuk N.V. Vestnik OrelGAU, 2015, 4(55): 93-98 (in Russ.).
  31. Dospekhov B.A. Metodika polevogo opyta s osnovami statisticheskoi obrabotki rezul'tatov issledovanii [Field trials with statistical analysis]. Moscow, 1985 (in Russ.).
  32. Cramariuc R., Donescu V., Popa M., Cramariuc B. The biological effect of the electrical field treatment on the potato seed: agronomic evaluation. Journal of Electrostatics, 2005, 63: 837-846 CrossRef
  33. Gut M. Impact of alternating electric field on potato tuber growth and cropping. Inzynieria Rolnicza, 2007, 8(96): 73-79.
  34. Marks N., Szecówka P.S. Impact of variable magnetic field stimulation on growth of aboveground parts of potato plants. Int. Agrophys., 2010, 24: 165-170.
  35. Shmigel' V.P., Potanina N.D. Kartofel' i ovoshchi, 1977, 3: 14 (in Russ.).
  36. Gordeev Yu.A. Metodologicheskie i agrobiologicheskie osnovy predposevnoi bioaktivatsii semyan sel'skokhozyaistvennykh kul'tur potokom nizkotemperaturnoi plazmy. Avtoreferat doktorskoi dissertatsii [Methodological and agrobiological bases of pre-sowing crop stimulation by low-temperature plasma. DSci Thesis]. Smolensk, 2012 (in Russ.).
  37. Tsuglenok G.I. Sistema issledovaniya elektrotekhnologicheskikh protsessov VCH i SVCH obrabotki semyan. Avtoreferat doktorskoi dissertatsii [The system to study processes of seed treatment with high frequency and microwave electormagmetic fields. DSci Thesis]. Krasnoyarsk, 2003 (in Russ.).