doi: 10.15389/agrobiology.2016.3.376eng

UDC 635.21:632.4:582.281.144:577.21

The authors are grateful to the Center for Collective Use of Equipment «Biotechnology» (All-RussianResearch Institute of Agricultural Biotechnology) for sequencing Avr clones and separating SSR amplicons by capillary electrophoresis.
Supported by the grants from Russian Foundation for Basic Research (projects 14-04-31613а and 16-04-00098) and the Ministry of Education and Science of the Russian Federation (project RFMEFI62114X0003). The phytopathological evaluation of Phytophthora infestans isolates was performed as part of the State Commission 0598-2015-0018.



E.A. Sokolova1, E.V. Morozova2, T.I. Ulanova2, O.P. Malychenko1, 3,
Ya.I. Alekseev1, 3, M.A. Kuznetsova2, E.E. Khavkin1

1All-Russian Research Institute of Agricultural Biotechnology, Federal Agency of Scientific Organizations, 42, ul. Timiryazevskaya, Moscow, 127550 Russia,
2All-Russian Research Institute of Phytopathology, Federal Agency of Scientific Organizations, 5, ul. Institute, pos. Bol’shie Vyazemy, Odintsovskii Region, Moscow Province, 143050 Russia, e-mail,,;
3Joint Stock Company Syntol, 42, ul. Timiryazevskaya, Moscow, 127550 Russia

Received March 21, 2016


Potato late blight caused by oomycete Phytophthora infestans (Mont.) de Bary is economically significant disease of worldwide importance. The traditional classification of specialized races of P. infestans is based on eleven resistance genes (R genes) introgressed from Solanum demissum to cultivated potato S. tuberosum. The selection of potato varieties, each comprising one of these R genes, is referred to as the Mastenbroek-Black set of differential plants. This set has been employed to establish the virulence genes (r genes) in isolates and strains of P. infestans, and collections of such individual strains have been maintained as tool sets of differential races for discerning R genes in cultivated and wild Solanum plants. While widely used in potato breeding for late blight resistance, these differential races have not been sufficiently explored by present-day molecular methods. We studied 11 differential races (1; 3; 4; 10; 11; 1.2; 1.3; 1.4; 1.2.3; 1.2.4; maintained in the Institute of Phytopathology for over forty years and isolate 161 possessing all 11 genes of virulence. When the differential races of P. infestans were genotyped with the standard set of 12 microsatellite (simple sequence repeat, SSR) loci, these races were distinct from reference A1 strains and highly aggressive lines lately dominant in the Western and Central Europe. SSR clusters of differential races did not match their r gene profiles. To assess the profiles of virulence genes in the differential races of P. infestans, we cloned three avirulence genes (Avr genes): ipiO = Avr-blb1, which recognizes the Rpi-blb1 = Rpi-sto1 gene of S. bulbocastanum and S. stoloniferum characterized by broad resistance to P. infestans races, and also Avr3a and Avr4 corresponding to R3a and R4 of S. demissum. These Avr genes were found in all differential races under study, and each gene was represented by several alleles.  The complex patterns of Avr genes are in sharp contrast with the conventional concept of «simple» monogenic races. In the case of ipiO (NCBI GenBank accession numbers KP308170-KP308174, KF154431-KF154433 and KF154434-KF154439) race 1 was represented by the alleles of classes I and II, whereas races 3 and 4 comprised only the class I genes. None of three races contained the most virulent class III ipiO gene. The virulent allele Avr3a_EM was found in all investigated races, while the avirulent allele Avr3a_KI was discerned only in races 1, 3 and 1.2.3 (KF154421-KF154426, KF154430, KP317568, KP317572, KP317580-KP317584, KP317588, KP317589). The Avr4 gene was cloned from differential races 1, 3, 1.4 and 11 (KF188215-KF188223). All these races contained the virulent allele, and race 11 comprised both avirulent and virulent alleles. The molecular and phytopathological evidence for Avr and r genes, respectively, matched only in 30 % of races. Probably, these discrepancies are due to the accumulation of mutations in the Avr genes of differential  races in the course of their long-term maintenance in the collection and more complex composition of R genes in plants which were initially to select the differentiating races.

Keywords: Phytophthora infestans, Avr genes, microsatellite (SSR) markers.


Full article (Rus)

Full text (Eng)



  1. Fry W.E. Phytophthora infestans, the crop (and R gene) destroyer. Mol. Plant Pathol., 2008, 9(3): 385-402 CrossRef
  2. Haverkort A.J., Boonekamp P.M., Hutten R., Jacobsen E., Lotz A.P., Kessel G.J., Visser R.G., van der Vossen E.A. Societal costs of late blight in potato and prospects of durable resistance through cisgenic modification. Potato Res., 2008, 51(1): 47-57 CrossRef
  3. Haverkort A.J., Boonekamp P.M., Hutten R., Jacobsen E., Lotz L.A.P., Kessel G.J.T., Vossen J.H., Visser R.G.F. Durable late blight resistance in potato through dynamic varieties obtained by cisgenesis: Scientific and societal advances in the DuRPh project. Potato Res., 2016, 59(1): 35-66 CrossRef
  4. Visser R.G.F., Bachem C.W.B., Borm T., de Boer J., van Eck H.J., Finkers R., van der Linden C., Maliepaard C.A., Uitdewilligen J.G.A.M.L., Voorrips R., Vos P., Wolters A.M.A. Possibilities and challenges of the potato genome sequence. Potato Res., 2014, 57(3): 327-330 CrossRef
  5. Gyetvai G., Sønderkær M., Göbel U., Basekow R., Ballvora A., Imhoff M., Kersten B., Nielsen K.-L., Gebhardt C. The transcriptome of compatible and incompatible interactions of potato (Solanum tuberosum) with Phytophthora infestans revealed by DeepSAGE analysis. PLoS One, 2012, 7(2): e31526 CrossRef 
  6. Jupe F., Witek K., Verweij W., Sliwka J., Pritchard L., Etherington G.J., Maclean D., Cock P.J., Leggett R.M., Bryan G.J., Cardle L., Hein I., Jones J.D.G. Resistance gene enrichment sequencing (RenSeq) enables reannotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations. Plant J., 2013, 76(3): 530-544 CrossRef
  7. Gao L., Tu Z.J., Millett B.P., Bradeen J.M. Insights into organ-specific pathogen defense responses in plants: RNA-seq analysis of potato tuber-Phytophthora infestans interactions. BMC Genomics, 2013, 14: 340 CrossRef
  8. Seidl M.F., Schneider A., Gover F., Snel B. A predicted functional gene network for the plant pathogen Phytophthora infestans as a framework for genomic biology. BMC Genomics, 2013, 14(1): 483 CrossRef
  9. Vleeshouwers V.G.A.A., Raffaele S., Vossen J., Champouret N., Oliva R., Segretin M.E., Rietman H., Cano L.M., Lokossou A., Kessel G., Pel M.A., Kamoun S. Understanding and exploiting late blight resistance in the age of effectors. Annu. Rev. Phytopathol., 2011, 49: 507-531 CrossRef
  10. Rodewald J., Trognitz B. Solanum resistance genes against Phytophthora infestans and their corresponding avirulence genes. Mol. Plant Pathol., 2013, 14(7): 740-757 CrossRef
  11. Vossen J.H., Jo K.R., Vosman B. Mining the genus Solanum for increasing disease resistance. In: Genomics of plant genetic resources. R. Tuberosa, A. Graner, E. Frison (eds.). Springer, Netherlands, Dordrecht, 2014: 27-46 CrossRef
  12. Fawke S., Doumane M., Schornack S. Oomycete interactions with plants: infection strategies and resistance principles. Microbiol. Mol. Biol. Rev., 2015, 79(3): 263-280 CrossRef
  13. Mariette N., Mabon R., Corbiere R., Boulard F., Glais I., Marquer B., Pasco C., Montarry J., Andrivon D. Phenotypic and genotypic changes in French populations of Phytophthora infestans: are invasive clones the most aggressive? Plant Pathol., 2016, 65(4): 577-586 CrossRef
  14. Li Y., Cooke D.E., Jacobsen E., van der Lee T. Efficient multiplex simple sequence repeat genotyping of the oomycete plant pathogen Phytophthora infestans. J. Microbiol. Meth., 2013, 92(3): 316-322 CrossRef
  15. Halterman D., Guenthner J., Collinge S., Butler N., Douches D. Biotech potatoes in the 21st century: 20 years since the first biotech potato. Am. J. Potato Res., 2016, 93(1): 1-20 CrossRef
  16. Hogenhout S.A., Van der Hoorn R.A., Terauchi R., Kamoun S. Emerging concepts in effector biology of plant-associated organisms. Mol. Plant-Microbe Interact., 2009, 22(2): 115-122 CrossRef
  17. Black W., Mastenbroek C., Mills W.R., Peterson L.C. A proposal for an international nomenclature of races of Phytophthora infestans and of genes controlling immunity in Solanum demissum derivatives. Euphytica, 1953, 2(3): 173-179 CrossRef
  18. Malcolmson J.F., Black W. New R genes in Solanum demissum Lindl. and their complementary races of Phytophthora infestans (Mont.) de Bary. Euphytica, 1966, 15(2): 199-203 CrossRef
  19. Bradshaw J.E. Potato breeding at the Scottish Plant Breeding Station and the Scottish Crop Research Institute: 1920-2008. Potato Research, 2009, 52(2): 141-172 CrossRef
  20. Bouwmeester K., van Poppel P., Govers F. Genome biology cracks enigmas of oomycete plant pathogens. In: Molecular aspects of plant disease resistance. UK, Oxford, Wiley-Blackwell, 2009, 102-134 CrossRef
  21. Win J., Chaparro-Garcia A., Belhaj K., Saunders D.G.O., Yoshida K., Dong S., Schornack S., Zipfel C., Robatzek S., Hogenhout S.A., Kamoun S. Effector biology of plant-associated organisms: concepts and perspectives. Cold Spring Harbor Symposia on Quantitative Biology, 2012, 77: 235-247 CrossRef
  22. Rietman H. Putting the Phytophthora infestans genome sequence at work; multiple novel avirulence and potato resistance gene candidates revealed. PhD thesis. Wageningen, The Netherlands, Wageningen University, 2011. Available: [Accessed 31 May 2016].
  23. Pankin A., Kinash E., Rogozina E., Kozlovskaya I., Kuznetsova M., Khavkin E. Are simple Phytophthora infestans races that simple? In: PPO-Special Report no. 15. H.T.A.M. Schepers (ed.). DLO Foundation, Wageningen, 2012: 205-211. Available:
    Page205-212_ArtemPan-kin_web.pdf [Accessed 31 May 2016].
  24. Kim H.-J., Lee H.-R., Jo K.-R., Mortazavian S.M.M., Huigen D.J., Evenhuis B., Kessel G., Visser R.G.F., Jacobsen E., Vossen J.H. Broad spectrum late blight resistance in potato differential set plants MaR8 and MaR9 is conferred by multiple stacked R genes. Theor. Appl. Genet., 2012, 124(5): 923-935 CrossRef
  25. Zhu S., Vossen J.H., Bergervoet M., Nijenhuis M., Kodde L., Kessel G.J.T., Vleeshouwers V., Visser R.G.F., Jacobsen E. An updated conventional-and a novel GM potato late blight R gene differential set for virulence monitoring of Phytophthora infestans. Euphytica, 2015, 202(2): 219-234 CrossRef
  26. Cooke D., Cano L., Raffaele S., Bain R., Cooke L., Etherington G.J., Deahl K.L., Farrer R.A., Gilroy E.M., Goss E.M., Grünwald N.J., Hein I., MacLean D., McNicol J.W., Randall E., Oliva R.F., Pel M.A., Shaw D.S., Squires J.N., Taylor M.C., Vleeshouwers V.G., Birch P.R., Lees A.K., Kamoun S. Genome analyses of an aggressive and invasive lineage of the Irish potato famine pathogen. PLoS Pathog., 2012, 8(10): e1002940 CrossRef
  27. Champouret N., Bouwmeester K., Rietman H., van der Lee T., Maliepaard C., Heupink A., van de Vondervoort P.J.I., Jacobsen E., Visser R.G.F., van der Vossen E.A.G., Govers F., Vleeshouwers V.G.A.A. Phytophthora infestans isolates lacking class 1 ipio variants are virulent on Rpi-blb1 potato. Mol. Plant-Microbe Interact., 2009, 22(12): 1535-1545 CrossRef
  28. Armstrong M.R., Whisson S.C., Pritchard L., Bos J.I.B., Venter E., Avrova A.O., Rehmany A.P., Böhme U., Brooks K., Cherevach I., Hamlin N., White B., Fraser A., Lord A., Quail M.A., Churcher C., Hall N., Berriman M., Huang S., Kamoun S., Beynon J.L., Birch P.R.J. An ancestral oomycete locus contains late blight avirulence gene Avr3a, encoding a protein that is recognised in the host cytoplasm. PNAS USA, 2005, 102(21): 7766-7771 CrossRef
  29. van Poppel P.M.J.A., Guo J., van de Vondervoort P.J.I., Jung M.W.M., Birch P.R.J., Whisson S.C., Govers F. The Phytophthora infestans avirulence gene Avr4 encodes an RXLR-dEER effector. Mol. Plant-Microbe Interact., 2008, 21(11): 1460-1470 CrossRef
  30. Kuznetsova M.A., Kozlovskii B.E., Beketova M.P., Sokolova E.A., Malyuchenko O.P., Alekseev Ya.I., Rogozina E.V., Khavkin E.E. Mikologiya i fitopatologiya, 2016, 50(3): 175-184 (in Russ.).