doi: 10.15389/agrobiology.2015.3.353eng

UDC 635.655:581.1:631.453

Supported by Russian Science Foundation (project № 14-16-00137).

OF PEA (Pisum sativum L.)

M.A. Vishnyakova1, E.V. Semenova1, I.A. Kosareva1, N.D. Kravchuk1,
C.I. Loskutov2, I.V. Pukhalskii2, A.I. Shaposhnikov2, A.L. Sazanova2,
A.A. Belimov2

1N.I. Vavilov Research Institute of Plant Industry, Federal Agency of Scientific Organizations, 42-44, ul. Bol’shaya Morskaya, St. Petersburg, 190000 Russia;

2All-Russian Research Institute for Agricultural Microbiology, Federal Agency of Scientific Organizations, 3, sh. Podbel’skogo, St. Petersburg, 196608 Russia,

Received March 10, 2015


Crops vary considerably in their resistance to acidic soils, and many legumes, including pea (Pisum sativum L.), considered to be sensitive or moderately sensitive crops compared to cereals. The main factor determining the phytotoxicity of acidic soils is the increased concentration of mobile aluminum ions in the soil solution. Accumulation of aluminum in root tissues interferes with cell division, initiation of growth of lateral roots and uptake of minerals and water by plants. Under laboratory conditions the resistance of plants to aluminum is estimated by the degree of damage to the roots by aluminum using dyes (hematoxylin, eriochrome cyanine R) and the ability of roots to restore growth after toxic effect of this metal. This work dedicated to the development of rapid assessment of aluminum tolerance especially for peas, which is as follows: the seeds were germinated in the growth chamber in the nutrient solution for 3 days (7000 lx illumination, temperature of 19 °С at night and 21 °С during the day, photoperiod 16 h), treated with a toxic concentration of aluminum chloride (3 mg Al/l) for 24 hours, incubated in fresh nutrient solution without aluminum for 2 days and stained with 0.1 % eriochrome cyanine R for 10 min. Zone of root tissue damage by aluminum painted in the color purple. Plant resistance to aluminum was determined by the length of the root re-growth area after exposure to the toxicant. Using 19 varieties of pea from the N.I. Vavilov Research Institute of Plant Industry collection (VIR collection) it was shown that pea has high variability in tolerance to aluminum. Varieties with a minimum (1.0÷1.5 mm) length of the root re-growth (k-2759, k-3654 and k-3283) were characterized by intense purple color of the root, but varieties with a maximum (14.0÷14.5 mm) length of the root re-growth (k-4376, k-9504 and k-7307) had a faint but detectable staining. The proposed method makes it possible to identify genotypes contrasting in aluminum tolerance, is highly reproducible and can be used for screening and study of intra-specific variability in this trait of pea plants at very early developing stage.

Keywords: aluminum, hematoxylin, peas, soil acidification, acid tolerance, eriochrome cyanine R.


Full article (Rus)

Full text (Eng)



  1. Doklad o sostoyanii i ispol'zovanii zemel' sel'skokhozyaistvennogo naznacheniya [Report on the status and use of agricultural land]. Moscow, 2011 (
  2. Aniol A., Gustafson P. Chromosome location of genes controlling aluminum tolerance in wheat, rye and triticale. Can. J. Genet. Cytol., 1984, 26: 701-705 CrossRef
  3. Lazof D.B., Holland M.J. Evaluation of the aluminium-induced root growth inhibition in isolation from low pH effects in Glycine max, Pisum sativum and Phaseolus vulgaris. Aust. J. Plant Physiol., 1999, 26: 147-157.
  4. Akhter A., Wagatsuma T., Khan M.S.H., Tawaraya K. Comparative studies on aluminum tolerance screening techniques for sorghum, soybean and maize in simple solution culture. Am. J. PlantPhysiol., 2009, 4: 1-8 CrossRef
  5. Kosareva I.A. Trudy po prikladnoi botanike, genetike i selektsii, 2012, 170: 35-45.
  6. Avdonin N.S. Izvestkovanie kislykh pochv [Liming acid soils]. Moscow, 1976.
  7. Eswaran H., Reich P., Beinroth F. Global distribution of soils with acidity. In: Plant-soil interactions at low pH. A.C. Moniz et al. (eds.). Brazilian Soil Science Society, Campinas, 1997.
  8. Sokolova T.A., Tolpeshta I.I., Trofimov S.Ya. Pochvennaya kislotnost'. Kislotno-osnovnaya bufernost' pochv. Soedineniya alyuminiya v tverdoi faze pochvy i v pochvennom rastvore [Soil acidity. Acid-base buffer capacity of soils. Aluminium compounds in the soil solid phase and solution]. Tula, 2012.
  9. Klimashevskii E.L. Geneticheskii aspekt mineral'nogo pitaniya rastenii [Genetic aspects of plant mineral nutrition]. Moscow, 1991.
  10. Ryan P.R., Ditomaso J.M., Kochian L.V. Aluminum toxicity in roots: an investigation of spatial sensitivity and the role of the root cap. J. Exp. Bot., 1993, 44: 437-446 CrossRef
  11. Ciamporova M. Morphological and structural responses of plant roots to aluminium at organ, tissue, and cellular levels. Biologia Plantarum, 2002, 45: 161-171 CrossRef
  12. Kochian L.V., Hoekenga O.A., Pineros M.A. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu. Rev. Plant Biol., 2004, 55: 459-493 CrossRef
  13. Kobayashi Y., Yamamoto Y., Matsumoto H. Studies on the mechanism of aluminum tolerance in pea (Pisum sativum L.) using aluminum-tolerant cultivar «Alaska» and aluminum-sensitive cultivar «Hyogo». Soil Science and Plant Nutrition, 2004, 50(2): 197-204 CrossRef
  14. Kikui S., Sasaki T., Maekawa M., Miyao A., Hirochika H., Matsumoto H., Yamamoto Y. Physiological and genetic analyses of aluminium tolerance in rice, focusing on root growth during germination. Journal of Inorganic Biochemistry, 2005, 99: 1837-1844 CrossRef
  15. Schmohl N., Pilling J., Fisahn J., Horst W.J. Pectin methylesterase modulates aluminium sensitivity in Zea mays and Solanum tuberosum. Physiologia Plantarum, 2000, 109: 419-427 CrossRef
  16. Amenos M., Corrales I., Poschenrieder C., Illes P., Baluska F., Barcelo J. Different effects of aluminum on the actin cytoskeleton and brefeldin A-sensitive vesicle recycling in root apex cells of two maize varieties differing in root elongation rate and aluminum tolerance. Plant Cell Physiol., 2009, 50(3): 528-540 CrossRef
  17. Choudhary A.K., Singh D. Screening of pigeonpea genotypes for nutrient uptake efficiency under aluminium toxicity. Physiology and Molecular Biology of Plants, 2011, 17(2): 145-152 CrossRef
  18. Kosareva I.A., Semenova E.V. Doklady Rossiiskoi akademii sel'skokhozyaistvennykh nauk, 2005, 5: 5-7.
  19. Polle E.C., Konzak C.E., Kittrick J.A. Visual detection of aluminum tolerance levels of wheat by hematoxilin staining of seedlings roots. Crop Science, 1978, 18: 823-827 CrossRef
  20. Cansado G.M.A., Loguercio L.L., Martins P.R. Parentoni S.N., Paiva E., Borem A., Lopes M.A. Hematoxylin staining as a phenotypic index for aluminum tolerance selection in tropical maize (Zea mays L.). Theor. Appl. Genet., 1999, 99: 747-754 CrossRef
  21. Aniol A. Metody okreaslania tolerancyjnosci zbóz na toksyczne dzialanie jonów glinu. Biul. Inst. Hodowli Aklim. Roslin., 1991, 243: 3-14.
  22. Anas A., Yoshida T. Heritability and genetic correlation of Al-tolerance with several agronomic characters in sorghum assessed by hematoxylin staining. Plant Production Science, 2004, 7: 280-282 CrossRef
  23. Singh D., Rai A.K., Panyang O. Hematoxilin staining as a potential screening technique for aluminum tolerance in pea. Curr. Sci., 2009, 96(8): 1029-1030.
  24. Kropotov A.V. Kompleksnaya otsenka sortov ovsa i gorokha na kislotoustoichivost'. Kandidatskaya dissertatsiya [Comprehensive assessment of oat and pea varieties for acid tolerance. PhD Thesis]. Kirov, 2000.
  25. Zanjanchi M.A., Noei H., Moghimi M. Rapid determination of aluminum by UV-vis diffuse reflectance spectroscopy with application of suitable adsorbents. Talanta, 2006, 70: 933-939 CrossRef
  26. Tria J., Haddad P.R., Nesterenko P.N. Determination of aluminium using high performance chelation ion chromatography. Journal of Separation Science, 2008, 31(12): 2231-2238 CrossRef
  27. Sato T., Saito Y., Chikuma M., Saito Y., Nagai S. Fluorimetric determination of trace amounts of albumin in bronchoalveolar lavage fluid with eriochrome cyanine R. Biological and Pharmaceutical Bulletin, 2007, 30(7): 1187-1190.
  28. Dapson R., Horobin R.W., Kiernan J. Hematoxylin shortages: their causes and duration, and other dyes that can replace hemalum in routine hematoxylin and eosin staining. Biotechnic and Histochemistry, 2010, 85(1): 55-63 CrossRef
  29. Shokrollahi A., Ghaedi M., Niband M.S, Rajabi H.R. Selective and sensitive spectrophotometric method for determination of sub-micro-molar amounts of aluminium ion. Journal of Hazardous Materials, 2008, 151(2-3): 642-648 CrossRef
  30. Niedziela G., Aniol A. Subcellular distribution of aluminium in wheat roots. Acta Biochimica Polonica, 1983, 30: 99-105.
  31. Kosareva I.A. Semenova E.V. Tezisy Mezhdunarodnoi konferentsii «Problemy fiziologii rastenii Severa» [Proc. Int. Conf. «Physiology of Northern plants»]. Petrozavodsk, 2004.
  32. Kosareva I.A., Davydova G.V., Semenova E.V. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 1998, 5: 73-76.
  33. Kosareva I.A., Olinga T.Zh. Izvestiya SPbGAU, 2007, 6: 47-49.
  34. Zotikov V.I., Naumkina T.S., Sidorenko V.S. VestnikOrelGAU, 2006, 1: 14-17.
  35. Debelyi G.A. Zernobobovye i krupyanye kul'tury, 2012, 2: 31-35.
  36. Poschenrieder C., Gunsé B., Corrales I., Barceló J. A glance into aluminum toxicity and resistance in plants. Science of the Total Environment, 2008, 400(1-3): 356-368 CrossRef
  37. Anas A., Yoshida T. Screening of Al-tolerant sorghum by hematoxylin staining and growth response. Plant Production Science, 2000, 3: 246-253.