doi: 10.15389/agrobiology.2015.3.323eng

UDC 631.461.51:575:576.6

Supported by Russian Science Foundation (project № 14-26-00094).


N.A. Provorov

All-Russian Research Institute for Agricultural Microbiology, Federal Agency of Scientific Organizations, 3, sh. Podbel’skogo, St. Petersburg, 196608 Russia,

Received February 2, 2015


Legume-rhizobia symbiosis (LRS) is considered as a unique model of evolutionary biology, which allows us to study the trade-off between the adaptive and progressive evolution in biological systems formed by prokaryotes and eukaryotes. Macroevolution of LRS results is establishing the compartments for hosting microsymbionts that activate the development of N2-fixing nodules by special signals — lipo-сhito-oligosaccharide Nod-factors. This evolution is dissected into a number of stages connected with the formation of: a) nodule endophytic associations (ancestral forms of rhizobia which retained the ability to fix CO2 and N2 in pure culture characteristic for their ancestors, occupy the intercellular spaces in nodules); b) primitive subcellular symbiosis (rhizobia which lost the ability to fix CO2 are located in infection threads penetrating into plant cells); c) intracellular mutualism (rhizobia, penetrated the plant cells to form the non-specialized symbiosomes where fix N2, maintaining the reproductive activity); d) symbiosis of altruistic type (rhizobia in specialized symbiosomes differentiate into bacteroids which irreversibly lost their reproductive activity providing a sharp increase in the N2-fixation intensity). This evolution occurs under the influence of natural selection induced in endosymbiotic populations, which can be individual (Darwinian, frequency-dependent) or group (inter-deme, kin) depending on the structure of microbial populations defined by mechanisms of host infection. Under the influence of this selection, complexity of the organization and the integrity of the LRS are increased, which serve as criteria for its evolutionary progress, as well as ecological efficiency of symbiosis (its impact on the partners’ productivity). This interaction between bacteria and plants has been evolved from pleiotropic symbioses (dynamic equilibrium between mutualism and antagonism) to the mutual partners’ exploitation (their equivalent exchange by products of N2 fixation and photosynthesis) and then to a highly-efficient mutualism of «altruistic» type (increased intensity of the symbiotrophic plant nutrition by nitrogen is the result of viability loss by bacteroids). Characteristics of macro- and microevolution of symbiosis opens the broad prospects for the construction of highly efficient forms of LRS, including the creation of «altruistic» rhizobia strains (in which an increased symbiotic efficiency is combined with a reduced survival outside plant) as well as a combination of alternative development programs for effective symbiosis (expensive and economical) independently arisen in different groups of legumes.

Keywords: microbe-plant symbiosis, evolution, adaptation, natural selection, genetic construction.


Full article (Rus)

Full text (Eng)



  1. Mair E. Zoologicheskii vid i evolyutsiya [Zoological species and evolution]. Moscow, 1968.
  2. Timofeev-Resovskii N.V., Vorontsov N.N., Yablokov A.V. Kratkii ocherk teorii evolyutsii [A brief sketch of the theory of evolution]. Moscow, 1977.
  3. Filipchenko Yu.A. Evolyutsionnaya ideya v biologii: istoricheskii obzor evolyutsionnykh uchenii XIX veka [The evolutionary idea in biology: a historical overview of evolutionary doctrines of the XIX century]. Moscow, 1977.
  4. Berg L.S. V knige: Trudy po teorii evolyutsii [In: The theory of evolution]. Leningrad, 1977: 95-338.
  5. Shmal'gauzen I.I. Organizm kak tseloe v individual'nom i istoricheskom razvitii [Organism as a whole in individual and historical development]. Moscow, 1982.
  6. Shmal'gauzen I.I. Puti i zakonomernosti evolyutsionnogo protsessa [Ways and regularities of the evolutionary process]. Moscow, 1983.
  7. Provorov N.A., Vorob'ev N.I. Zhurnal obshchei biologii, 2012, 73: 21-36.
  8. Franche C., Lindström K., Elmerich C. Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant and Soil, 2009, 321: 35-59 CrossRef
  9. Saikia S.P., Jain V., Khetarpal S., Aravind S. Dinitrogen fixation activity of Azospirillum brasilense in maize (Zea mays). Current Sci., 2007, 93: 1296-1300.
  10. Giraud E., Moulin L., Vallenet D., Barbe V., Cytryn E., Avarre J.C., Jaubert M., Simon D., Cartieaux F., Prin Y., Bena G., Hannibal L., Fardoux J., Kojadinovic M., Vuillet L., Lajus A., Cruveiller S., Rouy Z., Mangenot S., Segurens B., Dossat C., Franck W.L., Chang W.S., Saunders E., Bruce D., Richardson P., Normand P., Dreyfus B., Pignol D., Stacey G., Emerich D., Verméglio A., Médigue C., Sadowsky M. Legume symbioses: absence of nod genes in photosynthetic bradyrhizobia. Science, 2007, 316: 1307-1312 CrossRef
  11. Schardl C.L., Leuchtmann A., Chung K.R., Penny D., Siegel M.R. Co-evolution by common descent of fungal symbionts (Epichloë spp.) and grass hosts. Mol. Biol. Evol., 1997, 14: 133-143.
  12. Kaneko T., Minamisawa K., Isawa T., Nakatsukasa H., Mitsui H., Kawaharada Y., Nakamura Y., Watanabe A., Kawashima K., Ono A., Shimizu Y., Takahashi C., Minami C., Fujishiro T., Kohara M., Katoh M., Nakazaki N., Nakayama S., Yamada M., Tabata S., Sato S. Complete genomic structure of the cultivated rice endophyte Azospirillum sp. B510. DNA Res., 2010, 17: 37-50 CrossRef
  13. Brewin N.J. Plant cell wall remodeling in the Rhizobium-legume symbiosis. Crit. Rev. Plant. Sci., 2004, 23: 293-316 CrossRef
  14. Hirsch A.M., Lum M.R., Downie J.A. What makes the rhizobia-legume symbiosis so special? Plant Physiol., 2001, 127: 1484-1492 CrossRef
  15. Vorob'ev N.I., Provorov N.A. Ekologicheskayagenetika, 2008, 6: 3-11.
  16. Zilber-Rosenberg I., Rosenberg E. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol. Rev., 2008, 32: 723-735 CrossRef
  17. Van de Velde W., Zehirov G., Szatmari A., Debreczeny M., Ishihara H., Kevei Z., Farkas A., Mikulass K., Tiricz H., Satiat-Jeunemaître B., Alunni B., Bourge M., Kucho K., Abe M., Kereszt A., Maroti G., Uchiumi T., Kondorosi E. Mergaert P. Plant peptides govern terminal differentiation of bacteria in symbiosis. Science, 2010, 327: 1122-1126 CrossRef
  18. Cheng J., Sibley C.D., Zaheer R., Finan T.M. A Sinorhizobium meliloti minE mutant has an altered morphology and exhibits defects in legume symbiosis. Microbiology, 2007, 153: 375-387 CrossRef
  19. Ichige A., Walker G.C. Genetic analysis of the Rhizobium meliloti bacA gene: functional interchangeability with the Escherichia coli sbmA gene and phenotypes of mutants. J. Bacteriol., 1997, 179: 209-216.
  20. Maynard Smith J. Group selection and kin selection. Nature, 1964, 201: 1145-1147.
  21. Provorov N.A., Vorob'ev N.I. Prikladnaya biokhimiya i mikrobiologiya, 2015, 51(4): 1-8 CrossRef
  22. Gurusamy C., Davis P.J., Bal A.K. Seasonal changes in perennial nodules of beach pea (Lathyrus maritimus [L.] Bigel.) with special reference to oleosomes. Int. J. Plant Sci., 2000, 161: 631-638.
  23. Sprent J.I. Nodulation in Legumes. Kew Royal Botanical Gardens, 2001.
  24. Provorov N.A., Onishchuk O.P., Yurgel' S.N., Kurchak O.N., Chizhevska-
    ya E.P., Vorob'ev N.I., Zatovskaya T.V., Simarov B.V. Genetika, 2014, 50: 1273-1285 CrossRef
  25. Metlitskaya E.N., Provorov N.A., Simarov B.V., Raig Kh.A. Doklady RASKhN, 1995, 6: 7-9.
  26. Barnes D.K., Heichel G.H., Vance C.P., Ellis W.R. A multiple-trait breeding program for improving the symbiosis for N2 fixation between Medicago sativa L. and Rhizobium
    . Plant and Soil, 1984, 32: 303-314.
  27. Provorov N.A. Fiziologiya rastenii, 2013, 60: 31-37 CrossRef