doi: 10.15389/agrobiology.2015.3.339eng

UDC 633.31:631.461.5

Supported by Russian Foundations for Fundamental Research (grant № 14-04-01441), EurAsEC Program (Contract 14.М04.12.0011) and Russian Science Foundation (grant № 14-26-00094).

BACTERIA (Sinorhizobium meliloti) FOR THE GENES ENCODING

O.P. Onishchuk, O.N. Kurchak, E.P. Chizhevskaya, N.A. Provorov, B.V. Simarov

All-Russian Research Institute for Agricultural Microbiology, Federal Agency of Scientific Organizations, 3, sh. Podbel’skogo, St. Petersburg, 196608 Russia,

Received March 30, 2015


The most important traits of nodule bacteria (rhizobia), which are tested for selection of commercially valuable strains are the symbiotic efficiency (ability to increase the mass of the inoculated host plants due to intensive fixation of molecular nitrogen) and competitiveness (ability to inoculate the plants in the presence of other rhizobia strains of the same species). By PCR analysis of alfalfa rhizobia (Sinorhizobium meliloti) of various origins we for the first time showed polymorphism of natural populations for genes Smc03879 or phbA (negative regulator of the effective symbiosis, encodes for synthesis of poly-β-hydroxybutyrate) and Sma0907 or cmp-107 (involved in the competition for nodultion). The population of the Uralsk region of Kazakhstan living in the impoverished saline soil, phbA gene was detected in 100 % of the strains, while population of the rich Chernozem soil of the Ternopil region of Ukraine in only 82.2 % of the strains. Even lower occurrence of phbA (30.8 %) is characteristic of the strains isolated from alfalfa nodules collected in the Ternopil region. This polymorphism may reflect a low adaptive value for conversion of C-compounds into poly-b-hydroxybutyrate for rhizobia strains from the Ternopil region in comparison with the strains of the Uralsk region. Participation of gene phbA in the control symbiotic efficiency is confirmed by the fact that the gene nifH, which encodes for the structure of the small subunit of nitrogenase, but does not affect the intensity of its synthesis, differences in polymorphism between strains of two populations were not identified. The absence of polymorphism for gene Smb21375 or eff-798 in all studied populations may be due to the fact that it encodes an ABC transporter required for the uptake by bacteria the broad range of essential nutrients obtained from both the host plant or from the soil. An increased incidence of effective symbionts among strains lacking gene phbA, indicates the prospects to use the molecular probes containing this gene for the selection of practically important rhizobia genotypes that can provide the plant host with the significant amounts of fixed nitrogen.

Keywords: legume-rhizobia symbiosis, nodule bacteria, nitrogen fixation, symbiotic efficiency, competitiveness, population polymorphism, PCR analysis.


Full article (Rus)

Full text (Eng)



  1. Tikhonovich I.A., Kruglov Yu.V., Kozhemyakov A.P., Chebotar' V.K., Kandybin N.V., Laptev G.Yu. Biopreparaty v sel'skom khozyaistve [Biologicals in agriculture]. Moscow, 2005.
  2. Sharypova L.A., Onishchuk O.P., Chesnokova O.N., Fomina-Eshchen-
    ko J.G., Simarov B.V. Isolation and characterization of Rhizobium meliloti Tn5-mutants showing enhanced symbiotic effectiveness. Microbiology, 1994, 140: 463-470 CrossRef
  3. Provorov N.A., Onishchuk O.P., Yurgel' S.N., Kurchak O.N., Chizhevska-
    ya E.P., Vorob'ev N.I., Zatovskaya T.V., Simarov B.V. Genetika, 2014, 50(11): 1273-1285 CrossRef
  4. Onishchuk O.P., Kurchak O.N., Sharypova L.A., Provorov N.A., Simarov B.V.  Genetika, 2001, 37: 1507-1512.
  5. Rumyantseva M.L., Simarov B.V., Onishchuk O.P., Andronov E.E., Chizhevskaya E.P., Belova V.S., Kurchak O.N., Muntyan A.N., Rumyantseva T.B., Zatovskaya T.V. Biologicheskoe raznoobrazie kluben'kovykh bakterii v ekosistemakh i agrotsenozakh. Teoreticheskie osnovy i metody [Nodule bacteria biodiversity in ecosystems and agrocenoses. Theoretical basis and methods]. St. Petersburg, 2011.  
  6. Sagulenko E.A., Sharypova L.A., Krol’ E.A., Simarov B.V. Genetika, 1998, 34: 903-907.
  7. Chizhevskaya E.P., Onishchuk O.P., Sharypova L.A., Simarov B.V. Isolation and characterization of a gene involved in control of nodulation competitiveness of Sinorhizobium meliloti strain CXM1-105. Proc. 11th Int. Congr. on molecular plant-microbe interactions. I.A. Tikhonovich., B.J.J. Lugtenberg, N.A. Provorov (eds.). St. Petersburg, 2004: 549-553.
  8. Maniatis T., Frich E., Sambruk J. Metody gennoi inzhenerii. Molekulyarnoe klonirovanie [Methods in gene engineering. Molecular cloning]. Moscow, 1984.
  9. Provorov N.A., Andronov E.E., Onishchuk O.P., Kurchak O.N., Chizhevskaya E.P. Mikrobiologiya, 2012, 81: 244-253.
  10. Lakin G.F. Biometriya (4-e izdanie) [Biometry]. Moscow, 1990.
  11. Finan T.M., McWhinnie E., Driscoll B.T., Watson R.J. Complex symbiotic phenotypes result from gluconeogenic mutations in Rhizobium meliloti. Mol. Plant Microbe Interact., 1991, 4: 386-392.
  12. Cevallos M.A., Encarnacion S., Leija A., Mora Y., Mora J. Genetic and physiological characterization of a Rhizobium etli mutant strain unable to synthesize poly-beta-hydroxybutyrate. J. Bacteriol., 1996, 178: 1646-1654.
  13. Yurgel' S.N., Sharypova L.A., Simarov B.V. Genetika, 1998, 34: 737-741.
  14. Yurgel S.N., Kahn M.L. Dicarboxylate transport by rhizobia. FEMS Microbiol.
    ., 2004, 28: 489-501 CrossRef
  15. Miller S.H., Elliot R.M., Sullivan J.T., Ronson C.W. Host-specific regulation of symbiotic nitrogen fixation in Rhizobium leguminosarum biovar trifolii. Microbiology, 2007, 153: 3184-3195 CrossRef
  16. Bonaldi K., Gourion B., Fardoux J., Hannibal L., Cartieaux F., Boursot M., Vallenet D., Chaintreuil C., Prin Y., Nouwen N., Giraud E. Large-scale transposon mutagenesis of photosynthetic Bradyrhizobium sp. strain ORS278 reveals new genetic loci putatively important for nod-independent symbiosis with Aeschynomene indica. Mol. Plant Microbe Interact., 2010, 23: 760-770 CrossRef
  17. Onishchuk O.P., Vorob'ev N.I., Provorov N.A., Simarov B.V. Ekologicheskaya genetika, 2009, 7(2): 3-10.
  18. Onishchuk O.P., Sharypova L.A., Kurchak O.N., Bekker A., Simarov B.V. Genetika, 2005, 41: 1617-1623.
  19. Pobigaylo N., Szymczak S., Nattkemper T.W., Becker A. Identification of genes relevant to symbiosis and competitiveness in Sinorhizobium meliloti using signature-tagged mutants. Mol. Plant-Microbe Interact., 2008, 21: 219-231 CrossRef
  20. Williams A., Wilkinson A., Krehenbrink M., Russo D.M., Zorreguieta A., Downie J.A. Glucomannan-mediated attachment of Rhizobium leguminosarum to pea root hairs is required for competitive nodule infection. J. Bacteriol., 2008, 190: 4706-4715 CrossRef
  21. van Dillewijn P., Soto M.J., Villadas P.J., Toro N. Construction and environmental release of a Sinorhizobium meliloti strain genetically modified to be more competitive for alfalfa nodulation. Appl. Environ. Microbiol., 2001, 67: 3860-3865 CrossRef
  22. Ding H., Yip C.B., Geddes B.A., Oresnik I.J., Hynes M.F. Glycerol utilization by Rhizobium leguminosarum requires an ABC transporter and affects competition for nodulation. Microbiology, 2012, 158: 1369-1378 CrossRef