doi: 10.15389/agrobiology.2014.3.92eng

UDC 634.8:631.529:581.1

ABOUT GRAPE PLANT ADAPTATION TO AUTUMN AND WINTERING

N.I. Nenko, I.A. Il'ina, V.S. Petrov, V.V. Kudryashova, N.M. Zaporozhets, T.V. Skhalyakho

North-Caucasian Zonal Research Institute of Horticulture and Viticulture, Russian Academy of Agricultural Sciences,
39, ul. 40 let Pobedy, Krasnodar, 350901 Russia,
e-mail kubansad@kubannet.ru

ReceivedApril 6, 2010


In Russia, the grapes which combine valuable traits from Vitis vinifera and resistance to low temperature from V. amurensis of East Asia origin, and V. labrusca and V. riparia, both of American origin, are currently growing in popularity. Plant adaptation to wintering is due to complicated internal changes. We studied the effects of wintering (low temperatures and temperature difference) to the physiological condition and metabolism of grape plants after natural and simulated stresses (the forced dehydration and freezing at -25 °С). Nine commercial varieties were examined, namely Kristall (interspecial hybrid of Euro-Amur-American origin) and Bianka (interspecial hybrid of Euro-American origin) of the early ripening; Barkhatnii, Cabernet Sovinyon (Euro-Asian species from West European eco-geographic group) and Krasnostop AZOS, Dostoinii (interspecial hybrids of Euro-American origin) of middle ripening; Cabernet AZOS and Pervenets Magaracha  (interspecial hybrids of Euro-American origin), Ag Chakrak (Euro-Asian species from Eastern eco-geographic group) of late ripening. All samples have been planted in the same year, with Kober 5BB used as a rootstock. As indicators, the total water content, free to bound water content, К+, Са2+ and Мg2+ concentration, hydrocarbon, protein, nucleic acid and amino acid content, composition and content of organic acids, including ascorbic acid, were estimated in the phloem of annual shoots and in the wintering buds. It was shown that under grape plant transition from a dormancy, the frost resistance in Kristall, Barkhatnii and Cabernet Sovinyon is caused by both high water-retaining capacity of the cytoplasm and the cell membrane stability, whereas in Dostoinii, Cabernet AZOS and Pervenets Magaracha varieties it is mainly due to water retention, and in Krasnostop AZOS and Ag Chakrak varieties a protective effect results mainly from cell membrane stability. In natural and simulated conditions the highest frost resistance was shown in Kristall, Cabernet Sovinyon, Barkhatnii, Cabernet AZOS and Pervenets Magaracha varieties.

Keywords: grapes, frost resistance, water, protein, carbohydrate exchange, organic and amino acid content, concentration of cations, К+, Са2+, Мg2+.

 

Full article (Rus)

 

REFERENCES

1. Egorov E.A. V sbornike: Sovremennye metodologicheskie aspekty organizatsii selektsionnogo protsessa v sadovodstve i vinogradarstve [In: Modern aspects of breeding methodology in horticulture and viticulture]. Krasnodar, 2012: 3-46.
2. Egorov E.A., Serpukhovitina K.A., Petrov V.S. Adaptivnyi potentsial vinograda v usloviyakh stressovykh temperatur zimnego perioda [Grape plant adaptive potential under stress temperatures during winterig]. Krasnodar, 2006.
3. Nen'ko N.I., Doroshenko T.N., Gasanova T.A. V sbornike: Sovremennye metodologicheskie aspekty organizatsii selektsionnogo protsessa v sadovodstve i vinogradarstve [In: Modern aspects of breeding methodology in horticulture and viticulture]. Krasnodar, 2012: 189-198.
4. Petrov V.S., Il'ina I.A., Nud'ga T.A. et al. V sbornike: Metody i sposoby povysheniya stressoustoichivosti plodovykh kul'tur i vinograda [In: The ways of stress resistance increase in fruit and grape plants]. Krasnodar, 2009: 144-156.
5. Koshkin E.I. Fiziologiya ustoichivosti sel'skokhozyaistvennykh kul'tur [Physiology of crop resistance]. Moscow, 2010.
6. Yamane T., Shibayama K., Hamana Y., Yakushiji H. Response of container-grown girdled grapevines to short-term water-deficit stress. American journal of enology and viticulture, 2009, 60: 50-56.
7. Apakidze A., Khachidze O., Chigvinadze T. The response of grape-vine on ecological stresses according to some physiological and cytological indices. Bull. Georg. Acad. Sci., 2005, 171(2): 315-317.
8. Timperio A.M., Egidi M.G., Zolla L. Proteomics applied on plant abiotic stresses: Role of heat shock proteins (HSP). J. Proteomics, 2008, 105(4): 391-411.
9. Shinozaki K., Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature: differences and cross-talk between two signaling pathways. Curr. Opin. Plant. Biol., 2000, 3: 217-223. CrossRef
10. Aleshin E.P., Ponomarev A.A. Fiziologiya rastenii [Plant physiology]. Moscow, 1985.
11. Metodika gosudarstvennogo sortoispytaniya sel'skokhozyaistvennykh kul'tur [Technique for state testing crop varieties. Issue 5]. Vypusk 5. Moscow, 1970.
12. Kushnirenko M.D., Pecherskaya S.N. Fiziologiya vodoobmena i zasukhoustoichivosti rastenii [Physiology of water exchange and drought resistance in plants]. Kishinev, 1991.
13. Vorob'ev N.V. Byulleten' NTI VNIIrisa (Krasnodar), 1985, vypusk 33: 11-13.
14. Georgiev G.P. V sbornike: Khimiya i biokhimiya nukleinovykh kislot [In: Chemistry and biochemistry of nucleic acids]. Leningrad, 1968: 74-120.
15. Yakuba Yu.F. Materialy II Mezhdunarodnoi konferentsii «Sovremennoe pribornoe obespechenie i metody analiza pochv, rastenii i sel'skokhozyaistvennogo syr'ya» [Proc. II Int. Conf. «Modern devices and methods for soil, plant and row material analysis»]. Moscow, 2004: 71-74.
16. Praktikum po biokhimii /Pod redaktsiei S.E. Severina, G.A. Solov'evoi [Biochemistry: practical works. S.E. Severin, G.A. Solov’eva (eds.)]. Moscow, 1989.
17. Pausheva Z.P. Praktikum po tsitologii rastenii [Plant cytology: practical works]. Moscow, 1967.
18. Urbakh V.Yu. Biometricheskie metody [Biometric methods]. Moscow, 1964.
19. Grinenko V.V. V knige: Vodnyi rezhim sel'skokhozyaistvennykh rastenii [In: Water exchange parameters of cultivated plants]. Moscow, 1969: 222-230.
20. Merzhanian A.S. Vinogradarstvo [Viticulture]. Moscow, 1951.

back