doi: 10.15389/agrobiology.2013.3.100eng

UDC 631.417.2:579.64:579.8:577.21.06

TAXONOMIC STRUCTURE OF MICROBIAL ASSOCIATION IN DIFFERENT SOILS INVESTIGATED BY HIGH-THROUGHPUT SEQUENCING OF 16S-rRNA GENE LIBRARY

E.L. Chirak1, E.V. Pershina1, A.S. Dol'nik2, O.V. Kutovaya3,
E.S. Vasilenko3, B.M. Kogut3, Ya.V. Merzlyakova1, E.E. Andronov1

1All-Russin Research Institute of Agricultural Microbiology, Russian Academy of Agricultural Sciences,
3, sh. Podbelskogo, St. Petersburg – Pushkin, 196608 Russia,
e-mail: eeandr@gmail.com;
2St. Petersburg State University,
28, Universitetskii prosp.,St. Petersburg – Old Peterhof, 199034 Russia,
e-mail: alexander.dolnik@gmail.com;
3V.V. Dokuchaev Research Institute of Soil Science, Russian Academy of Agricultural Sciences,
7, Pyzhevskii per., Moscow, 119017 Russia,
e-mail: langobard@mail.ru

Received August 9, 2012


The features of soil microbiome may be an universal and very sensitive indicator of soil state used for optimization and biologization of agriculture systems. However, this approach to the matter requires a preliminary analysis of microbiomes composition in different types of soils. An analogical taxonomic investigations presented difficult task formerly and took considerable material and time expenditures. The introduction to molecular ecology of the new progeny methods of sequencing permits to increase both a number of revealed microorganism species and analyzed ecotops. The authors made the primary analysis of microbial associations with the use of pyrosequencing of soil metagenome. For the study, the collection of soils from different regions of Russia (19 samples) and also from the Crimea (Ukraine, 1 sample) was created. The bacteria from phylas of Proteobacteria (up 59.3 %), Actinobacteria (up 55.4 %), Acidobacteria (up 26.5 %), Verrucomicrobia (up 13.6 %), Bacteroidetes (up 10.5 %), Firmicutes (up 8.2 %), Gemmatimonadetes (up 6.9 %), Chloroflexi (up 5.7 %) and archaea from Crenarchaeota phyla were dominating in microbial associations. The comparison of taxonomic structure of microbial associations indicates that physiochemical factors (acidity and moisture of soil) have a more influence on prokaryote biodiversity than other factors (for example, type of soil or sampling point). So the soils from south regions with lesser moisture contain more the actinobacteria, when the moister north soils contain mainly the proteobacteria. The soils with low pH are characterized by a raise of acidobacteria percent.

Keywords: soil, amplicon library, 16S rRNA, microbiome, taxonomy.

 

Full article (Rus)

Full text (Eng)

 

REFERENCES

1. Wooley J.C., Ye Y. Metagenomics: Facts and artifacts, and computational challenges. Journal of Somputer Science and Technology, 2010, 1(25): 71-81. CrossRef
2. Mardis E.R. Next-generation DNA sequencing methods. Annu. Rev. Genomics Hum. Genet., 2008, 9: 211-219. CrossRef
3. Ronaghi M. Pyrosequencing: a tool for DNA sequencing analysisyu. Methods Mol. Biol., 2004, 255: 211-219.
4. Malferrati G., Monferinin P., De Blasio P. et al. High-quality genomic DNA from human whole blood and mononuclear cells. Bio Techniques, 2002, 33(6): 1228-1230.
5. Andronov E.E., Petrova S.N., Chizhevskaya E.P., Korostik E.V., Akhtemo-
va G.A., Pinaev A.G. Mikrobiologiya, 2009, 78(4): 525-534.
6. Bates S.T., Berg-Lyons J.G., Caporaso W.A. et al. Examining the global distribution of dominant archaeal populations in soil. ISME J., 2010, 5: 908-917. CrossRef
7. Caporaso J.G., Kuczynski J., Stombaugh J. et al. QIIME allows analysis of highthroughput community sequencing data. Naturemethods, 2010, 7(5): 335-336.
8. Fierer N., Jackson R.B. The diversity and biogeography of soil bacterial communities. PNAS USA, 2006, 103: 626-631.
9. Nemergut D.R., Costello E.K., Hamady M. Global patterns in the biogeography of bacterial taxa. Environ. Microbiol. J., 2010, 1(10): 53-63.
10. Rousk J., Baath E., Brookes P.C. et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J., 2010, 5: 1-12. CrossRef
11. Lauber C.L., Strickland M.S., Bradford M.A., Fierer N. The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol. Biochem., 2008, 40: 2407-2415. CrossRef
12. Dol'nik A.S., Tamazyan G.S., Pershina E.V., Vyatkina K.V., Poro-
zov Yu.B., Pinaev A.G., Andronov E.E. Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2012, 5: 55-67.
13. Pinevich A.V. Mikrobiologiya [Microbiology]. St. Petersburg, 2007.
14. Levy-Booth D.J., Campbell R.G., Gulden R.H., Harta M.M., Powellc J.R., Klironomos J.N., Pauls K.P., Swanton C.J., Trevorsa J.T., Dunfieldd K.E. Cycling of extracellular DNA in the soil environment. Soil Biol. Biochem., 2007, 39: 2977-2991. CrossRef
15. Spain A.M., Krumholz L.R., Elshahed M.S. Abundance, composition, diversity and novelty of soil Proteobacteria. ISME J., 2009, 3: 992-1000. CrossRef
16. Lauber C.L., Hamady M., Knight R., Fierer N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol., 2009, 75(15): 5111-5120. CrossRef

back