doi: 10.15389/agrobiology.2021.2.356eng

UDC: 636.2:577.121:579.6:577.2


Supported financially from Russian Foundation for Basic Research, project No. 20-016-00168 "Investigation of the expression of genes for metabolism in the cattle rumen microbial community as influenced by various feeding factors"



G.Yu. Laptev, E.A. Yildirim , T.P. Dunyashev, L.A. Ilina, D.G. Tyurina, V.A. Filippova, E.A. Brazhnik, N.V. Tarlavin, A.V. Dubrovin, N.I. Novikova

JSC Biotrof+, 19, korp. 1, Zagrebskii bulv., St. Petersburg, 192284 Russia, e-mail, (✉ corresponding author),,,,,, taгlav1995@biotrof.гu,, novikova@biotт

Laptev G.Yu.
Filippova V.A.
Yildirim E.A.
Brazhnik E.A.
Dunyashev T.P.
Tarlavin N.V.
Ilina L.A.
Dubrovin A.V.
Tyurina D.G.
Novikova N.I.

Received August 27, 2020

In recent years, in the livestock farms of the Russian Federation, a sharp increase in the level of milk productivity in cattle due to the introduction of high amounts of starch into the diet while reducing the proportion of non-starchy polysaccharides negatively affected many functional characteristics of the animal organism, which led, inter alia, to an increase in the prevalence of metabolic diseases. One of these disorders is ketosis which occurs in 23-80 % of highly productive cows in the post-calving period. A negative energy balance in dairy cows during lactation leads to a violation of the coordination of lipid metabolism between adipose tissue, liver, intestines and mammary glands, which leads to ketosis. The microbial community of the rumen plays a significant role in the energy homeostasis of the host, its metabolic and physiological adaptation to periods of lack of energy. In the present research, we describe the pattern of changes of microbial community structure and ongoing microbial metabolic pathways in the rumen of dairy cows with ketosis. The aim of the study was to study the influence of the incidence of ketosis in cows on the composition and metabolic potential of the rumen microbiome using NGS sequencing and quantitative PCR with reverse transcription. The proportion of ketosis in the rumen of the cow increased taxa associated with impaired energy balance, in particular, gluconeogenesis, increased synthesis of lactate, intensification of the pathogenesis process. The abundance of phylum Bacteroidetes decreased 1.2 times (at p ≤ 0.05). This phylum includes bacteria related to the formation of propionate and succinate, the main sources of glucose for the gluconeogenesis process and highly valuable for cows succinic and acetic acids. In the rumen of the animal with ketosis, we found an increase (p ≤ 0.05) in the proportion of the genera Odoribacter and Frischella among which there are pathogens, as well as the presence of the pathogenic species Bacteroides fragilis. In the cow with ketosis, non-attributable bacteria from the genus Gp15 completely disappeared from the rumen microbiota. The reconstruction and forecasting of the functional content of the metagenomic community was also carried out using a software package. A significant difference (p ≤ 0.001) was revealed in the expression level of the Ldh-L lactate dehydrogenase gene between animals: the expression level of genes associated with the synthesis of this enzyme in the cow with ketosis was 128±17.9 times higher than in the clinically healthy animal. Using the PICRUSt2 and MetaCyс software package, it was shown that the level of the predicted functional potential with respect to 12 metabolic pathways of the rumen microbiome was increased (p ≤ 0.05) in the cow with ketosis. In particular, there was an increase in the level of predicted metabolic capabilities of the microbiome associated with the implementation of heteroenzymatic lactic acid fermentation, an increase in the possibility of hexitol degradation, the synthesis of O antigens used by pathogenic forms to avoid phagocytosis and to resist the lytic effect of the complement system, etc.

Keywords: ketosis, rumen microbiome, ruminant, NGS sequencing, PICRUSt2, MetaCys, gene expression, metabolic pathways.



  1. Kalyuzhnyi I.I., Barinov N.D., Korobov A.V. Metabolicheskie narusheniya u vysokoproduktivnykh korov. Saratov, 2010 [Metabolic disorders in high yielding cows] (in Russ.).
  2. Boichard D., Brochard M. New phenotypes for new breeding goals in dairy cattle. Animal, 2012, 6: 544-550 CrossRef
  3. Koeck A., Jamrozik J., Schenkel F.S., Moore R.K., Lefebvre D.M., Kelton D.F., Miglior F. Genetic analysis of milk β-hydroxybutyrate and its association with fat-to-protein ratio, body condition score, clinical ketosis, and displaced abomasum in early first lactation of Canadian Holsteins. Journal of Dairy Science, 2014, 97: 7286-7292 CrossRef
  4. Gohary K., Overton M.W., Von Massow M., LeBlanc S.J., Lissemore K.D., Duffield T.F. The cost of a case of subclinical ketosis in Canadian dairy herds. Canadian Veterinary Journal, 2016, 57: 728-732.
  5. Pryce J.E., Parker Gaddis K.L., Koeck A., Bastin C., Abdelsayed M., Gengler N., Miglior F., Heringstad B., Egger-Danner C., Stock K.F., Bradley A.J., Cole J.B. Opportunities for genetic improvement of metabolic diseases. Journal of Dairy Science, 2016 99: 6855-6873 CrossRef
  6. Gavrish V.G., Aganin A.V., Demkin G.P. Spravochnik veterinarnogo vracha. Rostov-na Donu, 1996 [Veterinarian handbook] (in Russ.).
  7. Bell A.W. Regulation of organic nutrient metabolism during transition from late pregnancy to early lactation. Journal of Animal Science, 1995, 73: 2804-2819 CrossRef
  8. Wang X., Li X., Zhao C., Hu P., Chen H., Liu Z., Liu G., Wang Z. Correlation between composition of the bacterial community and concentration of volatile fatty acids in the rumen during the transition period and ketosis in dairy cows. Applied and Environmental Microbiology, 2012, 78(7): 2386-2392 CrossRef
  9. Reynolds C.K., Huntington G.B., Tyrrell H.F., Reynolds P.J. Net metabolism of volatile fatty acids, d-β-hydroxybutyrate, nonesterified fatty acids, and blood gases by portal-drained viscera and liver of lactating Holstein cows. Journal of Dairy Science, 1988, 7: 2395-2405 CrossRef
  10. Crawford P.A., Crowley J.R., Sambandam N., Muegge B.D., Costello E.K., Hamady M., Knight R., Gordon J.I. Regulation of myocardial ketone body metabolism by the gut microbiota during nutrient deprivation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106: 11276-11281 CrossRef
  11. Cotter D.G., Schugar R.C., Crawford P.A. Ketone body metabolism and cardiovascular disease American Journal of Physiology: Heart and Circulatory Physiology, 2013, 304: H1060-H1076 CrossRef
  12. Bergman E.N. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiological Reviews, 1990, 70: 567-590 CrossRef
  13. Sutton J.D. The fermentation of soluble carbohydrates in rumen contents of cows fed diets containing a large proportion of hay. British Journal of Nutrition, 1968, 22: 689-712 CrossRef
  14. Negrão F.D.M., Zanine A.D.M., Cabral L.D.S., Souza A.L.D., Alves G.R., Ferreira D.D.J., Dantas C.C.O., Lehmkuhl A. Fractionation of carbohydrates and protein and rumen degradation kinetic parameters of Brachiaria grass silage enriched with rice bran. Revista Brasileira de Zootecnia, 2014, 43: 105-113 CrossRef
  15. McDonald P., Edwards R.A., Greenhalgh J.F.D., Morgan C.A., Sinclair L.A., Wilkinson R.G. Animal Nutrition, 7th edition. Pearson, Harlow, England, 2010.
  16. Stewart C.S., Bryant M.P. The rumen microbial ecosystem. P.N. Hobson, C.S. Stewart (eds.). Elsevier Applied Science, London, 1988: 21-76.
  17. Tajimaa K., Arai S., Koretsugu O., Takafumi N., Hiroki M., Mutsumi N., Rustam I., Benno A.Y. Rumen bacterial community transition during adaptation to high-grain diet. Anaerobe, 2000, 6: 273-284 CrossRef
  18. Douglas G.M., Maffei V.J., Zaneveld J.R., Yurgel S.N., Brown J.R., Taylor C.M., Huttenhower C., Langille M.G.I. PICRUSt2 for prediction of metagenome functions. Nature Biotechnology, 2020, 38(6): 685-688 CrossRef
  19. Wilkinson T.J., Huws S.A., Edwards J.E., Kingston-Smith A.H., Siu-Ting K., Hughes M., Rubino F., Friedersdorff M., Creevey C.J. CowPI: a rumen microbiome focussed version of the PICRUSt func-tional inference software. Frontiers in Microbiology, 2018, 9: 1095 CrossRef
  20. Zhu Z., Kristensen L., Difford G.F., Poulsen M., Noel S.J., Abu Al-Soud W., Sørensen S.J., Lassen J., Løvendahl P., Højberg O. Changes in rumen bacterial and archaeal communities over the transition period in primiparous Holstein dairy cows. Journal of Dairy Science, 2018, 101: 9847-9862 CrossRef
  21. Grum G., Difford G.F., Buitenhuis B., Lassen J., Noel S.J., Højberg O., Plichta D.R., Zhu Z., Poulsen N.A, Sundekilde U.K., Løvendahl P., Sahana G. Predictive ability of host genetics and rumen microbiome for subclinical ketosis. Journal of Dairy Science, 2020, 103(5): 4557-4569 CrossRef
  22. Khafipour E., Li S., Plaizier J.C., Krause D.O. Rumen microbiome composition determined using two nutritional models of subacute ruminal acidosis. Applied and Environmental Microbiology, 2009, 75: 7115-7124 CrossRef
  23. Kondrakhin I.P., Levchenko V.I. Diagnostika i terapiya vnutrennikh boleznei zhivotnykh. Moscow, 2005 [Diagnostics and therapy of internal diseases of animals] (in Russ.).
  24. Zeka F., Vanderheyden K., De Smet E., Cuvelier C.A., Mestdagh P., Vandesompele Jo. Straightforward and sensitive RT-qPCR based gene expression analysis of FFPE samples. Scientific Reports, 2016, 6: 21418 CrossRef
  25. Kim B.R., Shin J., Guevarra R., Lee J.H., Kim D.W., Seol K.-H., Lee J.-H., Kim H.B., Isaacson R. Deciphering Diversity indices for a better understanding of microbial communities. Applied Microbiology and Biotechnology, 2017, 27(12): 2089-2093 CrossRef
  26. Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta DeltaC(T)) method. Methods, 2001, 25(4): 402-408 CrossRef
  27. Geishauser T., Leslie K., Kelton D., Duffield T. Evaluation of five cowside tests for use with milk to detect subclinical ketosis in dairy cows. Journal of Dairy Science, 1998, 81: 438-443 CrossRef
  28. Jami E., White B.A., Mizrahi I. Potential role of the bovine rumen microbiome in modulating milk composition and feed efficiency. PLoS ONE, 2014, 9(1): e85423 CrossRef
  29. Jewell K.A., McCormick C.A., Odt C.L., Weimer P.J., Suen G. Ruminal bacterial community composition in dairy cows is dynamic over the course of two lactations and correlates with feed efficiency. Applied and Environmental Microbiology, 2015, 81(14): 4697-4710 CrossRef
  30. Lima F.S., Oikonomou G., Lima S.F., Bicalho M.L., Ganda E.K., de Oliveira Filho J.C., Lorenzo G., Trojacanec P., Bicalho R.C. Prepartum and postpartum rumen fluid microbiomes: characterization and correlation with production traits in dairy cows. Applied and Environmental Microbiology, 2015, 81(4): 1327-1337 CrossRef
  31. McCann J.C., Wickersham T.A., Loor J.J. High-throughput methods redefine the rumen microbiome and its relationship with nutrition and metabolism. Bioinformatics and Biology Insights, 2014, 8: 109-125, CrossRef
  32. Schären M., Frahm J., Kersten S., Meyer U., Hummel J., Breves G., Dänicke S. Interrelations between the rumen microbiotlyaa and production, behavioral, rumen fermentation, metabolic, and immunological attributes of dairy cows. Journal of Dairy Science, 2018, 101: 4615-4637 CrossRef
  33. Wallace R.J., Sasson G., Garnsworthy P.C., Tapio I., Gregson E., Bani P., Huhtanen P., Bayat A.R., Strozzi F., Biscarini F., Snelling T.J., Saunders N., Potterton S.L., Craigon J., Minuti A., Trevisi E., Callegari M.L., Cappelli F.P., Cabezas-Garcia E.H., Vilkki J., Pinares-Patino C., Fliegerová K.O., Mrázek J., Sechovcová H., Kopečný J., Bonin A., Boyer F., Taberlet P., Kokou F., Halperin E., Williams J.L., Shingfield K.J., Mizrahi I. A heritable subset of the core rumen microbiome dictates dairy cow productivity and emissions. Science Advances, 2019, 5(7): eaav8391 CrossRef
  34. Kita A., Miura T., Okamura Y., Aki T., Matsumura Y., Tajima T., Kato J., Nakashimada Y. Dysgonomonas alginatilytica sp. nov., an alginate-degrading bacterium isolated from a microbial consortium. International Journal of Systematic and Evolutionary Microbiology, 2015, 65(10): 3570-3575 (doi:10.1099/ijsem.0.000459">CrossRef
  35. Chiquette J., Allison M.J., Rasmussen M.A. Prevotella bryantii 25A used as a probiotic in early-lactation dairy cows: effect on ruminal fermentation characteristics, milk production, and milk composition. Journal of Dairy Science, 2008, 91(9): 3536-3543 CrossRef
  36. Hino T., Shimada K., Maruyama T. Substrate Preference in a strain of Megasphaera elsdenii, a ruminal bacterium, and its implications in propionate production and growth competition. Applied and Environmental Microbiology, 1994, 60(6): 1827-1831 CrossRef
  37. Counotte G.H., Prins R.A., Janssen R.H., deBie M.J. Role of Megasphaera elsdenii in the fermentation of DL-(2-C) lactate in the rumen of dairy cattle. Applied and Environmental Microbiology, 1981, 42: 649-655 CrossRef
  38. Mountfort D.O., Roberton A.M. Origins of fermentation products formed during growth of Bacteroides ruminicola on glucose. The Journal of General Microbiology, 1978, 106(2): 353-360 CrossRef
  39. Martin S.A. Factors affecting glucose uptake by the ruminal bacterium Bacteroides ruminicola. Applied Microbiology and Biotechnology, 1992, 37: 104-108 CrossRef
  40. Rios-Covian D., Salazar N., Gueimonde M., de Los Reyes-Gavilan C.G. Shaping the metabolism of intestinal bacteroides population through diet to improve human health. Frontiers in Microbiology, 2017, 8: 376 CrossRef
  41. Macy J.M., Ljungdahl L.G., Gottschalk G. Pathway of succinate and propionate formation in Bacteroides fragilis. Journal of Bacteriology, 1978, 134(1): 84-91 CrossRef
  42. Wang K., Liao M., Zhou N., Bao L., Ma K., Zheng Z., Wang Y., Liu C., Wang W., Wang J., Liu S., Liu H. Parabacteroides distasonis alleviates obesity and metabolic dysfunctions via production of succinate and secondary bile acids. Cell Reports, 2019, 26(1): 222-235 CrossRef
  43. Morotomi M., Nagai F., Sakon H., Tanaka R. Paraprevotella clara gen. nov., sp. nov. and Paraprevotella xylaniphila sp. nov., members of the family 'Prevotellaceae' isolated from human faeces. International Journal of Systematic and Evolutionary Microbiology, 2009, 59(8): 1895-1900 CrossRef
  44. Hardham J.M., King K.W., Dreier K., Wong J., Strietzel C., Eversole R.R., Sfintescu C., Evans R.T. Transfer of Bacteroides splanchnicus to Odoribacter gen. nov. as Odoribacter splanchnicus comb. nov., and description of Odoribacter denticanis sp. nov., isolated from the crevicular spaces of canine periodontitis patients. International Journal of Systematic and Evolutionary Microbiology, 2008, 58(1): 103-109 CrossRef
  45. Engel P., Bartlett K., Moran, N. The bacterium Frischella perrara causes scab formation in the gut of its honeybee host. mBio, 2015, 6(3): e00193-15 CrossRef
  46. Kraipowich N.R., Morris D.L., Thompson G.L., Mason G.L. Bovine abortions associated with Bacteroides fragilis fetal infection. Journal of Veterinary Diagnostic Investigation, 2000, 12(4): 369-371 CrossRef
  47. Lee D.K., Park S.Y., An H.M., Kim J.R., Kim M.Ji., Lee S.W., Cha M.K., Kim S.A., Chung M.J., Lee K.O., Ha N.J. Antimicrobial activity of Bifidobacterium spp. isolated from healthy adult Koreans against cariogenic microflora. Archives of Oral Biology, 2011, 56(10): 1047-1054 CrossRef
  48. Dziarski R., Park S.Y., Kashyap D.R., Dowd S.E., Gupta D. Pglyrp-regulated gut microflora Prevotella falsenii, Parabacteroides distasonis and Bacteroides eggerthii enhance and Alistipes finegoldii attenuates colitis in mice. PLoS ONE, 2016, 11(1): e0146162 CrossRef
  49. Walker A., Pfitzner B., Harir M., Schaubeck M., Calasan J., Heinzmann S.S., Turaev D., Rattei T., Endesfelder D., zu Castell W., Haller D., Schmid M., Hartmann A., Schmitt-Kopplin P. Sulfonolipids as novel metabolite markers of Alistipes and Odoribacter affected by high-fat diets. Scientific Reports, 2017, 7(1): 11047 CrossRef
  50. Beller A., Kruglov A., Durek P., von Goetze1 V., Hoffmann U., Maier R., Heiking K., Siegmund B., Heinz G.A., Mashreghi M.-F., Radbruch A., Chang H.-D. P104 Anaeroplasma, a potential anti-inflammatory probiotic for the treatment of chronic intestinal inflammation. Annals of the Rheumatic Diseases, 2019, 78 (1): A45-A46 CrossRef
  51. Xia L.C., Liu G., Yingxin G., Li X., Pan H., Ai D. Identifying gut microbiota associated with colorectal cancer using a zero-inflated lognormal model. Frontiers in Microbiology, 2019, 10: 826 CrossRef
  52. Nocek J.E. Bovine acidosis: implications on laminitis. Journal of Dairy Science, 1997, 80(5): 1005-1028 CrossRef
  53. Zhang X., Zhang S., Shi Y., Shen F., Wang H. A new high phenyl lactic acid-yielding Lactobacillus plantarum IMAU10124 and a comparative analysis of lactate dehydrogenase gene. FEMS Microbiology Letters, 2014, 356(1): 89-96 CrossRef
  54. Yeswanth S., Nanda Kumar Y., Venkateswara Prasad U., Swarupa V., Koteswara rao V., Venkata Gurunadha Krishna Sarma P. Cloning and characterization of L-lactate dehydrogenase gene of Staphylococcus aureus. Anaerobe, 2013, 24: 43-48 CrossRef
  55. Huang Y., You C., Liu Z. Cloning of D-lactate dehydrogenase genes of Lactobacillus delbrueckii subsp. bulgaricus and their roles in D-lactic acid production. Biotechnology, 2017, 7(3): 194 CrossRef
  56. Goerke C., Bayer M.G., Wolz C. Quantification of bacterial transcripts during infection using competitive reverse transcription-PCR (RT-PCR) and LightCycler RT-PCR. Clinical and Vaccine Immunology, 2001, 8(2): 279-282 CrossRef
  57. Bustin S.A. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. Journal of Molecular Endocrinology, 2002, 29(1): 23-39 CrossRef
  58. Nolan T., Hands R.E., Bustin S.A. Quantification of mRNA using real-time RT-PCR. Nature Protocols, 2006, 1(3): 1559-1582 CrossRef
  59. Russell J.B., Sharp W.M., Baldwin R.L. The effect of pH on maximum bacterial growth rate and its possible role as a determinant of bacterial competition in the rumen. Journal of Animal Science, 1979, 48: 251-255 CrossRef
  60. Kang T.S., Korber D.R., Tanaka T. Regulation of dual glycolytic pathways for fructose metabolism in heterofermentative Lactobacillus panis PM1. Applied and Environmental Microbiology, 2013, 79(24): 7818-7826 CrossRef
  61. Downes J., Munson M.A., Radford D.R., Spratt D.A., Wade W.G. Shuttleworthia satelles gen. nov., sp. nov., isolated from the human oral cavity. International Journal of Systematic and Evolutionary Microbiology, 2002, 52(5): 1469-1475 CrossRef
  62. Cepeljnik T., Zorec M., Kostanjsek R., Nekrep F.V., Marinsek-Logar R. Is Pseudobutyrivibrio xylanivorans strain Mz5T suitable as a probiotic? An in vitro study. Folia Microbiologica (Praha), 2003, 48(3): 339-345 CrossRef
  63. Sizova M.V., Muller P.A., Stancyk D., Panikov N.S., Mandalakis M., Hazen A., Hohmann T., Doerfert S.N., Fowle W., Earl A.M., Nelson K.E., Epstein S.S. Oribacterium parvum sp. nov. and Oribacterium asaccharolyticum sp. nov., obligately anaerobic bacteria from the human oral cavity, and emended description of the genus Oribacterium. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(8): 2642-2649 CrossRef
  64. O’Herrin S.M., Kenealy W.R. Glucose and carbon dioxide metabolism by Succinivibrio dextrinosolvens. Applied and Environmental Microbiology, 1993, 59(3): 748-755 CrossRef
  65. Pradel E., Boquet P.L. Utilization of exogenous glucose-1-phosphate as a source of carbon or phosphate by Escherichia coli K12: respective roles of acid glucose-1-phosphatase, hexose-phosphate permease, phosphoglucomutase and alkaline phosphatase. Research in Microbiology, 1991, 142(1): 37-45 CrossRef
  66. Booth I.R., Kroll R.G. Regulation of cytoplasmic pH (pH1) in bacteria and its relationship to metabolism. Biochemical Society Transactions, 1983, 11(1): 70-72 CrossRef
  67. Johnston C., Deuel H.J. Jr. Studies on ketosis: XXI. The comparative metabolism of the hexitols. Journal of Biological Chemistry, 1943, 149: 117-124 CrossRef
  68. Vidal-Leiria M., van Uden N. Inositol dehydrogenase from the yeast Cryptococcus melibiosum. Biochimica et Biophysica Acta, 293(2): 295-303 CrossRef
  69. Kalynych S., Morona R., Cygler M. Progress in understanding the assembly process of bacterial O-antigen. FEMS Microbiology Reviews, 38(5): 1048-1065 CrossRef
  70. Murray G.L., Attridge S.R., Morona R. Altering the length of the lipopolysaccharide O antigen has an impact on the interaction of Salmonella enterica serovar Typhimurium with macrophages and complement. Journal of Bacteriology, 2006, 188: 2735-2739 CrossRef
  71. Duerr C.U., Zenk S.F., Chassin C., Pott J., Gutle D., Hensel M., Hornef M.W. O-antigen delays lipopolysaccharide recognition and impairs antibacterial host defense in murine intestinal epithelial cells. PLOS Pathogens, 2009, 5(9): e1000567 CrossRef
  72. Saldias M.S., Ortega X., Valvano M.A. Burkholderia cenocepacia O antigen lipopolysaccharide prevents phagocytosis by macrophages and adhesion to epithelial cells. Journal of Medical Microbiology, 2009, 58(12): 1542-1548 CrossRef
  73. Gavrish V.G, Kalyuzhnyi I.I. Lechebnik domashnikh zhivotnykh i ptits dlya fermerov i zhivotnovodov-lyubitelei. Rostov-na Donu, 1999 [Pet and bird treatment for farmers and hobbyist livestock breeders] (in Russ.).
  74. Bouche N., Fromm H. GABA in plants: just a metabolite? Trends in Plant Science, 2004, 9(3): 110-115 CrossRef
  75. Scott E.M., Jakoby W.B. Soluble gamma-aminobutyric-glutamic transaminase from Pseudomonas fluorescens. Journal of Biological Chemistry, 1959, 234(4): 932-936.
  76. Belitsky B.R., Sonenshein A.L. GabR, a member of a novel protein family, regulates the utilization of gamma-aminobutyrate in Bacillus subtilis. Molecular Microbiology, 2002, 45(2): 569-583 CrossRef







Full article PDF (Rus)

Full article PDF (Eng)