doi: 10.15389/agrobiology.2021.2.261eng

UDC: 639.31:636.085.19:615.9



G.P. Kononenko , D.A. Onischenko, M.I. Ustyuzhanina

All-Russian Research Institute of Sanitary, Hygiene and Ecology — Branch of FSC ARRIEV RAS, 5, Zvenigorodskoe sh., Moscow, 123022 Russia, e-mail (✉ corresponding author),,

Kononenko G.P.
Ustyuzhanina M.I.
Onishchenko D.A.

Received November 16, 2020

Modern fish aquaculture is a large-scale and rapidly developing industry of global production (FAO, 2018). In order to improve the quality of the products produced, an active search is underway for effective ways to control the safety of artificial feeds (J. Bostock et al., 2010). Based on the results of monitoring projects carried out in Argentina, Brazil, the United States, China, Korea and Central European countries (C. Pietsch et al., 2013; B.T.C. Barbosa et al., 2013; M. Greco et al., 2015; L. Pinotti et al., 2016), the situation of contamination of fish feed with mycotoxins is recognized as extremely serious both in terms of prevalence and content, and in terms of combined occurrence (I. Matejova et al., 2017; C. Pietsch, 2019). For the Russian fishery, which in recent years has become a multi-destination, specialists of academic and university science, as well as industry research institutes proposed feed rations that account for age and species characteristics of fish (J.A. Zheltov, 2006; Y.V. Sklyarov, 2008), and discussed in detail the problem of microbial contamination (I.V. Burlachenko, 2008). In the Russian Federation, mandatory requirements for compliance with quality and safety indicators have been introduced for raw materials and finished feed products (GOST 10385-2014) and a modern methodological base for mycotoxicological control has been created (GOST 31653-2012, GOST 31691-2012, GOST 32587-2013, GOST 34108-2017, GOST R 51116-2017).The purpose of this review is to update information on mycotoxin contamination of domestic raw materials for the production of aquafeeds, to generalize world data on the nature of acute action of the most occurring contaminants, as well as to analyze clinical signs, pathologic-anatomical and biochemical changes accompanying chronic fish mycotoxicosis. In recent years, we have received convincing evidence that the group of the most likely contaminants of raw ingredients — wheat, barley and corn flour, bran, sunflower cake and meal — includes T-2 toxin, deoxynivalenol, fumonisins of group B and zearalenone, related to fusariotoxins, as well as alternariol, ochratoxin A, citrinin, cyclopiazonic acid, mycophenolic acid and emodin (G.P. Kononenko et al., 2018, 2019). Analysis of world data on experimental mycotoxicoses of different age groups of common carp (Cyprinus carpio), channel catfish (Ictalurus punctatus), white Amur (Ctenopharyngodon idellus), Nile tilapia (Oreochromis niloticus), rainbow trout (Oncorhynchus mykiss), Atlantic salmon (Salma salar), shows that fusariotoxins should be considered as key risk factors and efforts should continue to refine their safe thresholds. Intoxications caused by ochratoxin A remain insufficiently studied, and the situation with regard to other possible feed contaminants is unclear. Reasonable proposals for regulation in fish feed were reported only for T-2 toxin for common carp (V.T. Galash, 1988), for deoxynivalenol — for white Amur (C. Huang et al., 2018, 2019, 2020) and Atlantic salmon (A. Bernhoft et al., 2018), for fumonisin B1 — for channel catfish (M.N. Li et al., 1994, S. Lumlertdacha et al., 1995). Data on the degree of retention of these mycotoxins in fish tissues is limited (C. Pietsch et al., 2014, 2015; A. Ananter et al., 2016), and therefore regulations on product residues have not yet been adopted. However, the search for new approaches to correctly assess the consequences of their negative effects and transmission to fish products continues, and this leaves no doubt that a solution will be found.

Keywords: aquaculture, fish mycotoxicoses, feed raw materials, combined feeds, mycotoxins.



  1. The state of world fisheries and aquaculture. Food and Agriculture Organization of the United Nations, Rome, 2018.
  2. Bostock J., McAndrew B., Richards R., Jauncey K., Telfer T., Lorenzen K., Little D.C., Ross L., Handisyde N., Gatward I., Corner R. Aquaculture: global status and trends. Proceedings of the Royal Society B: Biological Sciences, 2010, 365(1554): 2897-2912 CrossRef
  3. Wolf H., Jackson E.W. Hepatomas in rainbow trout: descriptive and experimental epidemiology. Science, 1963, 142(3593): 676-678 CrossRef
  4. Hintikka E.L. Trichothecene poisoning on fish. In: Fusarium: mycotoxins, taxonomy and pathogenicity. J. Chełkowski (ed.). Elsevier Science Publishers B.V., Amsterdam, 1989: 131-138.
  5. Vanyi A., Buza L., Széka A. Fusariotoxicosis. IV. The effect of F-2 toxin (zearalenone) on the spermiogenesis of the carp. Hungarian Veterinary Journal, 1974, 29: 457-461.
  6. Abdelhamid A.M. Effect of Sterigmatocystin contaminated diets on fish performance. Archives of Animal Nutrition, 1988, 38(9): 833-846 CrossRef
  7. Barbosa B.T.S., Pereyra C.M., Soleiro C.A., Dias E.O., Oliveira A.A., Keller K.A., Silva P.P.O., Cavaglieri L.R., Rosa C.A.R. Mycobiota and mycotoxins present in finished fish feeds from farms in the Rio de Janeiro State, Brazil. International Aquatic Research, 2013, 5(1): 3 CrossRef
  8. Greco M., Pardo A., Pose G. Mycotoxigenic fungi and natural co-occurrence of mycotoxins in rainbow trout (Oncorhynchus mykiss) feeds. Toxins, 2015, 7(11): 4595-4609 CrossRef
  9. Pinotti L., Ottoboni M., Giromini C., Dell’Orto V., Cheli F. Mycotoxin contamination in the EU feed supply chain: a focus on cereal byproducts. Toxins, 2016, 8(2): 45 CrossRef
  10. Pietsch C., Kersten S., Burkhardt-Holm P., Valenta H., Dӓnicke S. Occurrence of deoxynivalenol and zearalenone in commercial fish feed: an initial study. Toxins, 2013, 5(1): 184-192 CrossRef
  11. Matejova I., Svobodova Z., Vakula J., Mares J., Modra H. Impact of mycotoxins on aquaculture fish species: a review. Journal of the World Aquaculture Society, 2017, 48(2): 186-200 CrossRef
  12. Pietsch C. Risk assessment for mycotoxin contamination in fish feeds in Europe. Mycotoxin Research, 2020, 36(1): 41-62 CrossRef
  13. Strategiya razvitiya akvakul'tury v Rossiiskoi Federatsii na period do 2020 goda (utv. Minsel'khozom RF 10.09.2007. Available: No date [Strategy for development of aquaculture in the Russian Federation for the period up to 2020] (in Russ.).
  14. Zheltov Yu.A. Retsepty kombikormov dlya vyrashchivaniya ryb raznykh vidov i vozrastov v promyshlennom rybovodstve. Kiev, 2006 [Recipes of compound feeds for growing fish of different species and ages in industrial fish farming] (in Russ.).
  15. Sklyarov V.Ya. Korma i kormlenie ryb v akvakul'ture. Moscow, 2008 [Fish feed and feeding in aquaculture] (in Russ.).
  16. Ostroumova I.N. Biologicheskie osnovy kormleniya ryb. St. Petersburg, 2012 [Biological basis of fish feeding] (in Russ.).
  17. Gamygin E.A., Bagrov A.M., Borodin A.L., Ridiger A.V. Rybnoe khozyaistvo,2013, 4: 87-88 (in Russ.).
  18. Burlachenko I.V. Aktual'nye voprosy bezopasnosti kombikormov v akvakul'ture ryb. Moscow, 2008 [Current issues of feed safety in fish aquaculture] (in Russ.).
  19. Smirnova I.R., Mikhalev A.V., Satyukova L.P., Borisova V.S. Veterinariya, 2009, 5: 30-36 (in Russ.).
  20. Naumova A.M., Rozumnaya L.A., Naumova A.Yu., Loginov L.S. Rossiiskii zhurnal «Problemy veterinarnoi sanitarii, gigieny i ekologii», 2019, 4(32): 474-481 (in Russ.).
  21. Kononenko G.P., Burkin A.A. Veterinarnaya patologiya, 2002, 2: 128-132 (in Russ.).
  22. Kononenko G.P., Burkin A.A. Fusariotoxins content in maize and rice grain harvested in the main regions of cultivation in the Russian Federation. Sel'skokhozyaistvennaya biologiya, 2008, 5: 88-91.
  23. Kononenko G.P., Burkin A.A. About fusariotoxins contamination of cereals used for fodder. Sel'skokhozyaistvennaya biologiya, 2009, 4: 81-88.
  24. Kononenko G.P., Burkin A.A., Zotova E.V., Ustyuzhanina M.I., Smirnov A.M. Features of wheat and barley grain contamination with fusariotoxins. Russian Agricultural Sciences, 2018, 44(2): 137-141 CrossRef
  25. Kononenko G.P., Burkin A.A., Zotova E.V., Smirnov A.M. Rossiiskaya sel'skokhozyaistvennaya nauka, 2019, (3): 28-31 CrossRef (in Russ.).
  26. Kononenko G.P., Burkin A.A., Zotova E.V., Soboleva N.A. Prikladnaya biokhimiya i mikrobiologiya, 2000, 36(2): 209-213 (in Russ.).
  27. Kononenko G.P., Burkin A.A. A survey on the occurrence of citrinin in feeds and their ingredients in Russia. Mycotoxin Research, 2008, 24(1): 3-6 CrossRef
  28. Kononenko G.P., Burkin A.A. Peculiarities of feed contamination with citrinin and ochratoxin A. Agricultural Sciences, 2013, 4(1): 34-38 CrossRef
  29. Kononenko G.P., Ustyuzhanina M.I., Burkin A.A. The problem of safe sunflower (Helianthus annuus L.) use for food and fodder purposes (review). Agricultural Biology [Sel'skokhozyaistvennaya biologiya], 2018, 53(3); 485-498 CrossRef
  30. Santacroce M.P., Conversano M.C., Casalino E., Lai O., Zizzadoro C., Centoducati G., Crescenzo G. Aflatoxins in aquatic species: metabolism, toxicity and perspectives. Reviews in Fish Biology and Fisheries, 2008, 18(1): 99-130 CrossRef
  31. Galash V.T. Toksiko-biologicheskoe deistvie trikhotetsenovykh mikotoksinov na karpa i predel'no dopustimaya kontsentratsiya T-2-toksina v karpovykh kombikormakh. Avtoreferat kandidatskoi dissertatsii. Moscow, 1988 [Biotoxicological effects of trichothecene mycotoxins on carp and the maximum permissible concentration of T-2 toxin in carp feeding. PhD Thesis] (in Russ.).
  32. Sahoo P.K., Mukherjee S.C., Mohanty S., Dey S., Nayak S.K. A preliminary study on acute citrinin toxicity in rohu (Labeo rohita) fingerlings. Indian Journal of Comparative Microbiology, Immunology and Infection Diseases, 1999, 20(1): 62-64.
  33. Jantrarotai, W., Lovell R.T. Acute and subchronic toxicity of cyclopiazonic acid to channel catfish. Journal of Aquatic Animal Health, 1990, 2(4): 255-260 CrossRef
  34. Doster R.C., Sinnhuber R.O., Wales J.H. Acute intraperitoneal toxicity of ochratoxins A and B in rainbow trout (Salmo gairdneri). Food and Cosmetic Toxicology, 1972, 10(1): 85-92 CrossRef
  35. Pelyhe C., Kövesti B., Zándoki E., Kovács B., Szabó-Fodor J., Mézes M., Balogh K. Effect of 4-week feeding of deoxynivalenol- or T-2-toxin-contaminated diet on lipid peroxidation and glutathione redox system in the hepatopancreas of common carp (Cyprinus carpio L.). Mycotoxin Research, 2016, 32: 77-83 CrossRef
  36. Matejova I., Faldyna M., Modra H., Blahova J., Palikova M., Markova Z., Franc A., Vicenova M., Vojtek L., Bartonkova J., Sehonova P., Hostovsky M., Svobodova Z. Effect of T-2 toxin-contaminated diet on common carp (Cyprinus carpio L.). Fish and Shellfish Immunology, 2017, 60: 458-465 CrossRef
  37. Sklyarov V.Ya., Studentsova N.A., Selivanova V.A., Zherdeva E.P. Izvestiya VUZov. Pishchevaya tekhnologiya, 1998, (5-6): 16-18.
  38. Pepeljnjak S., Petrinec Z., Kovacić S., Segvic M. Screening toxicity study in young carp (Cyprinus carpio L.) on feed amended with fumonisin B1. Mycopathologia, 2002, 156(2): 139-145 CrossRef
  39. Petrinec Z., Pepeljnjak S., Kovacić S., Krznaric A. Fumonisin B1 causes multiple lesions in common carp (Cyprinus carpio). Deutsche Tierӓrztliche Wochenschrift, 2004, 111(9): 358-363.
  40. Manning B.B., Li M.H., Robinson E.H., Gaunt P.S., Camus A.C., Rottinghaus G.E. Response of catfish to diets containing T-2 toxin. Journal of Aquatic Animal Health, 2003, 15(3): 230-239 CrossRef
  41. Manning B. V kn.: Mikotoksiny i mikotoksikozy /Pod redaktsiei D. Diaza. Moscow, 2006: 275-292 [In: Mycotoxins and mycotoxicoses. D. Diaz (ed.)] (in Russ.).
  42. Lumlertdacha S., Lovell R.T., Shelby R.A., Lenz S.D., Kemppainen B.W. Growth, hematology, and histopathology of channel catfish, Ictalurus punctatus, fed toxins from Fusarium moniliforme. Aquaculture, 1995, 130(2-3): 201-218 CrossRef
  43. Li M.H., Raverty S.A., Robinson E.H. Effects of dietary mycotoxins produced by the mould Fusarium moniliforme on channel catfish Ictalurus punctatus. Journal of the World Aquaculure. Society, 1994, 25(4): 512-516 CrossRef
  44. Lumlertdacha S., Lovell R.T. Fumonisin-contaminated dietary corn reduced survival and antibody production by channel catfish challenged with Edwardsiella ictaluri. Journal of Aquatic Animal Health, 1995, 7(1): 1-8 CrossRef
  45. Manning B.B., Ulloa R.M., Li M.H., Robinson E.H., Rottinghaus G.E. Ochratoxin A fed to channel catfish (Ictalurus pinctatus) causes reduced growth and lesions of hepatopancreatic tissue. Aquaculture, 2003, 219(1-4): 739-750 CrossRef
  46. Tuan N.A., Manning B.B., Lovell R.T., Rottinghaus G.E. Responses of Nile tilapia (Oreochromis niloticus) fed diets containing different concentrations of moniliformin and fumonisin B1. Aquaculture, 2003, 217(1-4): 515-528 CrossRef
  47. Diab A.M., Salem R.M., El-Keredy M.S., Abeer E.-K.M.S., Ali G.I.E., El-Habashi N. Experimental ochratoxicosis A in Nile tilapia and its amelioration by some feed additives. International Journal of Veterinary Science and Medicine, 2018, 6(2): 149-158 CrossRef
  48. Poston H.A., Coffin J.L., Combs G.F. Jr. Biological effects of dietary T-2 toxin on rainbow trout, Salmo gairdneri. Aquatic Toxicology, 1982, 2(2): 79-88 CrossRef
  49. Woodward B., Young L.G., Lun A.K. Vomitoxin in diets of rainbow trout (Salmo gairdneri). Aquaculture, 1983, 35: 93-101 CrossRef
  50. Hooft J.M., Elmor A.E.H.I., Encarnaҫão P., Bureau D.P. Rainbow trout (Oncorhynchus mykiss) is extremely sensitive to the feed-borne Fusarium mycotoxin deoxynivalenol (DON). Aquaculture, 2011, 311(1-4): 224-232 CrossRef
  51. Hooft J.M., Ferreira C., Lumsden J.S., Sulyok M., Krska R., Bureau D.P. The effects of naturally occurring or purified deoxynivalenol (DON) on growth performance, nutrient utilization and histopathology of rainbow trout (Oncorhynchus mykiss). Aquaculture, 2019, 505: 319-332 CrossRef
  52. Gonçalves R.A., Navarro-Guillén C., Gilannejad N., Dias J., Schatzmayr D., Bichl G., Czabany T., Moyano F.J., Rema P., Yúfera M., Mackenzie S., Martínez-Rodríguez G. Impact of deoxynivalenol on rainbow trout: Growth performance, digestibility, key gene expression regulation and metabolism. Aquaculture, 2018, 490: 362-372 CrossRef
  53. Gonçalves R.A., Menanteau-Ledouble S., Schöller M., Eder A., Schmidt-Posthaus H., Mackenzie S., El-Matbouli M. Effects of deoxynivalenol exposure time and contamination levels on rainbow trout. Journal of the World Aquaculture Society, 2019, 50(1): 137-154 CrossRef
  54. Ananter A., Manyes L., Meca G., Ferrer E., Luciano F.B., Pimpão C.T., Font G. Mycotoxins and their consequences in aquaculture: A review. Aquaculture, 2016, 451: 1-10 CrossRef
  55. Moldal T., Bernhoft A., Rosenlund G., Kaldhusdal M., Koppang E. Dietary deoxynivalenol (DON) may impair the epithelial barrier and modulate the cytokine signaling in the intestine of atlantic salmon (Salmo salar). Toxins, 2018, 10(9): 376 CrossRef
  56. Bernhoft A., Høgåsen H.R., Rosenlund G., Moldal T., Grove S., Berntssen M.H.G., Thoresen S.I., Alexander J. Effects of dietary deoxynivalenol or ochratoxin A on performance and selected health indices in Atlantic salmon (Salmo salar). Food and Chemical Toxicology, 2018, 121: 374-386 CrossRef
  57. Kravchenko L.V., Galash V.T., Avren’eva L.T., Kranauskas A.E. On the sensitivity of carp, Cyprinus carpio, to mycotoxin T-2. Journal of Ichthyology, 1989, 29: 156-160.
  58. Balogh K., Heincinger M., Fodor J., Mézes M. Effects of long term feeding of T-2 and HT-2 toxin contaminated diet on the glutathione redox status and lipid peroxidation processes in common carp (Cyprinus carpio L.). Acta Biologica Szegediensis, 2009, 53(Suppl. 1): 23-27.
  59. Kovacić S., Pepeljnjak S., Petrinec Z., Klarić M.S. Fumonosin B1 neurotoxicity in young carp (Cyprinus carpio L.). Archives of Industrial Hygiene and Toxicology, 2009, 60(4): 419-426 CrossRef
  60. Manning B.B., Terhune J.S., Li M.H., Robinson E.H., Wise D.J., Rottinghaus G.E. Exposure to feedborne mycotoxins T-2 toxin and ochratoxin A causes increased mortality of channel catfish challenged with Edwardsiella ictaluri. Journal of Aquatic Animal Health, 2005, 17(2): 147-152 CrossRef
  61. Manning B.B., Abbas H.A., Wise D.J., Greenway T. The effect of feeding diets containing deoxynivalenol contaminated corn on channel catfish (Ictalurus punctatus) challenged with Edwardsiella ictaluri. Aquaculture Research, 2014, 45(11): 1782-1786 CrossRef
  62. Brown D.W., McCoy C.P., Rottinghaus G.E. Experimental feeding of Fusarium moniliforme culture material containing fumonosin B1 to channel catfish, Ictalurus punctatus. Journal of Veterinary Diagnostic Investigation, 1994, 6(1): 123-124 CrossRef
  63. Goel S., Lenz S.D., Lumlertdacha S., Lovell R.T., Shelby R.A., Li M., Riley R.T., Kemppainen B.W. Sphingolipid levels in catfish consuming Fusarium moniliforme corn culture material containing fumonisins. Aquatic Toxicology, 1994, 30(4): 285-294 CrossRef
  64. Matejova I., Modra H., Blahova J., Franc A., Fictum P., Sevcikova M., Svobodova Z. The effect of mycotoxin deoxynivalenol on haematological and biochemical indicators and histopathological changes in rainbow trout (Oncorhynchus mykiss). BioMed Research International, 2014: 310680 CrossRef
  65. Šišperová E. , Modrá H., Ziková A., Kloas W., Blahová J., Matejová I., Živná D., Svobodová Z. The effect of mycotoxin deoxynivalenol (DON) on the oxidative stress markers in rainbow trout (Oncorhynchus mykiss, Walbaum 1792). Journal of Applied Ichthyology, 2015, 31(5): 855-861 CrossRef
  66. Pietsch S., Kersten S., Valenta H., Dӓnicke S., Schulz C., Kloas W., Burkhardt-Holm P. In vivo effects of deoxynivalenol (DON) on innate immune responses of carp (Cyprinus carpio L.). Food and Chemical Toxicology, 2014, 68: 44-52 CrossRef
  67. Pietsch S., Schulz C., Rovira P., Kloas W., Burkhardt-Holm P. Organ damage and hepatic lipids accumulation in carp (Cyprinus carpio L.) after feed-borne exposure to the mycotoxin, deoxynivalenol (DON). Toxins, 2014, 6: 756-778 CrossRef
  68. Pietsch C., Burkhardt-Holm P. Feed-borne exposure to deoxynivalenol leads to acute and chronic effects on liver enzymes and histology in carp. World Mycotoxin Journal, 2015, 8(5): 619-627 CrossRef
  69. Pietsch C., Katzenback B.A., Garcia-Garcia E., Schulz C., Belosevic M., Burkhardt-Holm P. Acute and subchronic effects on immune responses of carp (Cyprinus carpio L.) after exposure to deoxynivalenol (DON) in feed. Mycotoxin Research, 2015, 31: 151-164 CrossRef
  70. Pietsch S., Kersten S., Valenta H., Dӓnicke S., Schulz C., Burkhardt-Holm P., Junge R. Effects of dietary exposure to zearalenone (ZEN) on carp (Cyprinus carpio L.). Toxicon, 2015, 7(9): 3465-3480 CrossRef
  71. Pietsch S., Junge R. Physiological responses of carp (Cyprinus carpio L.) to dietary exposure to zearalenone (ZEN). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2016, 188: 52-59 CrossRef
  72. Pietsch S., Junge R., Burkhardt-Holm P. Immunomodulation by zearalenone in carp (Cyprinus carpio L.). Biomed Research International, 2015, 2015: 420702 CrossRef
  73. Pietsch S. Zearalenone (ZEN) and its influence on regulation of gene expression in carp (Cyprinus carpio L.) liver tissue. Toxins, 2017, 9(9): 283 CrossRef
  74. Huang C., Wu P., Jiang W.-D., Liu Y., Zeng Y.-Y., Jiang J., Kuang S.Y., Tang L., Zhang Y.A., Zhou X.-Q., Feng L. Deoxynivalenol decreased the growth performance and impaired intestinal physical barrier in juvenile grass carp (Ctenopharyngodon idella). Fish and Shellfish Immunology, 2018, 80: 376-391 CrossRef
  75. Huang C., Feng L., Jiang W.-D., Wu P., Liu Y., Zeng Y.-Y., Jiang J., Kuang S.Y., Tang L., Zhou X.-Q. Deoxynivalenol decreased intestinal immune function related to NF-κB and TOR signalling in juvenile grass carp (Ctenopharyngodon idella). Fish and Shellfish Immunology, 2019, 84: 470-484 CrossRef
  76. Huang C., Feng L., Liu X.-A., Jiang W.-D., Wu P., Liu Y., Jiang J., Kuang S.-Y., Tang L., Zhou X.-Q. The toxic effects and potential mechanisms of deoxynivalenol on the structural integrity of fish gill: Oxidative damage, apoptosis and tight junctions disruption. Toxicon, 2020, 174: 32-42 CrossRef
  77. Wang Y.-L., Zhou X.-Q., Jiang W.-D., Wu P., Liu Y., Jiang J., Wang S.-W., Kuang S.-Y., Tang L., Feng L. Effects of dietary zearalenone on oxidative stress, cell apoptosis, and tight junction in the intestine of juvenile grass carp (Ctenopharyngodon idella). Toxins, 2019, 11(6): 333 CrossRef
  78. Sanden M., Jørgensen S., Hemre G.-I., Ørnsrud R., Sissener N.H. Zebrafish (Danio rerio) as a model for investigating dietary toxic effects of deoxynivalenol contamination in aquaculture feeds. Food and Chemical Toxicology, 2012, 50(12): 4441-4448 CrossRef
  79. Bakos K., Kovács R., Staszny A., Sipos D.K., Urbányi B., Müller F., Csenki Z., Kovács B. Developmental toxicity and estrogenic potency of zearalenone in zebrafish (Danio rerio). Aquatic Toxicology, 2013, 136-137: 13-21 CrossRef
  80. Scwartz P., Bucheli T.D., Wettstein F.E., Burkhardt-Holm P. Life-cycle exposure to the estrogenic mycotoxin zearalenone affects zebrafish (Danio rerio) development and reproduction. Environmental Toxicology, 2013, 28(5): 276-289 CrossRef
  81. Modra H., Sisperova E., Blahova J., Enevova V., Fictum P., Franc A., Mares J., Svobodova Z. Elevated concentrations of T-2 toxin cause oxidative stress in the rainbow trout (Oncorhynchus mykiss). Aquaculture Nutrition, 2017, 24(2): 842-849 CrossRef
  82. Matejova I., Vicenova M., Vojtek L., Kudlackova H., Nedbalcova K., Faldyna M., Sisperova E., Modra H., Svobodova Z. Effect of the mycotoxin deoxynivalenol on the immune responses of rainbow trout (Oncorhynchus mykiss). Veterinarni Medicina, 2015, 60(9): 515-521 CrossRef
  83. Woźny M., Brzuzan P., Wolińska L., Góra M., Łuczyński M.K. Differential gene expression in rainbow trout (Oncorhynchus mykiss) liver and ovary after exposure to zearalenone. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2012, 156(3-4): 221-228 CrossRef
  84. Woźny M., Brzuzan P., Gusiatin M., Jakimiuk E., Dobosz S., Kuźmiński H. Influence of zearalenone on selected biochemical parameters in juvenile rainbow trout (Oncorhynchus mykiss). Polish Journal of Veterinary Sciences, 2012, 15(2): 221-225 CrossRef
  85. El-Sayed Y.S., Khalil R.H., Saad T.T. Acute toxicity of ochratoxin A in marine water-reared sea bass (Dicentrarchus labrax L.). Chemosphere, 2009, 75(7): 878-882 CrossRef
  86. Gbore F.A., Adewole A.M., Oginni O., Oguntolu M.F., Bada A.M., Akele O. Growth performance, haematology and serum biochemistry of African catfish (Clarias gariepinus) fingerlings fed graded levels of dietary fumonisin B1. Mycotoxin Research, 2010, 26(4): 221-227 CrossRef
  87. Adeyemo B.T., Oloyede T.L., Ogeh A.V., Orkuma C.J. Growth performance and serum lipids profile of Clarias gariepinus catfish following experimental dietary exposure to fumonosin B1. Open Journal of Veterinary Medicine, 2016, 6(8): 127-138 CrossRef
  88. Tola S., Bureau D.P., Hooft J.M., Beamish F.W.H., Sulyok M., Krska R., Encarnação P., Petkam R. Effects of wheat naturally contaminated with Fusarium mycotoxins on growth performance and selected health indices of red tilapia (Oreochromis niloticus ½ O. mossambicus). Toxins, 2015, 7(6): 1929-1944 CrossRef
  89. Yildirim M., Manning B.B., Lovell R.T., Grizzle J.M., Rottinghaus G.E. Toxicity on moniliformin and fumonisin B1 fed singly and in combination in diets for young channel catfish Ictalurus punctatus. Journal of the World Aquaculture Society, 2000, 31(4): 599-608 CrossRef
  90. Nguyen A.T., Manning B.B., Lovel R.T., Rottinghaus G.E. Responces of Nile tilapia (Oreochromis niloticus) fed diets containing different concentrations of moniliformin or fumonisin B1. Aquaculture, 2003, 217(1-4): 515-528 CrossRef
  91. Asrarkulova A.S., Bulushova N.V. Biotekhnologiya, 2018, 34(4): 6-17 (in Russ.).
  92. Zachariasova M., Dzuman Z., Veprikova Z., Hajkova K., Jiru M., Vaclavikova M., Pospichalova M., Florian M., Hajslova J. Occurrence of multiple mycotoxins in European feedingstuffs, assessment of dietary intake by farm animals. Animal Feed Science and Technology, 2014, 193: 124-140 CrossRef
  93. Kosareva T.V., Vasil'ev A.A., Gogolkin A.A. Vestnik Saratovskogo Gosuniversiteta im. N.I. Vavilova, 2014, 2: 15-18 (in Russ.).
  94. Pravdin V., Ushakova N., Ponomarev S., Kuznetsov F. Kombikorma, 2009, 8: 58-59 (in Russ.).
  95. Sorokina N.V., Lozovskii A.R. Estestvennye nauki, 2010, 4(33): 74-79 (in Russ.).
  96. Kononenko G.P., Burkin A.A. Izvestiya RAN. Seriya biologicheskaya, 2018, 2: 150-157 CrossRef (in Russ.).
  97. Burkin A.A., Kononenko G.P., Georgiev A.A., Georgieva M.L. Biologiya morya, 2021, 47(1): 40-44 CrossRef (in Russ.).
  98. Ponomorev S.V., Gamygin E.A., Kanid'ev A.N. Vestnik AGTU. Seriya: Rybnoe khozyaistvo, 2010, 1: 132-139 (in Russ.).
  99. Piryazeva E.A. Rossiiskii zhurnal «Problemy veterinarnoi sanitarii, gigieny i ekologii», 2018, 4(28): 23-26 (in Russ.).
  100. Strategiya razvitiya akvakul'tury v Rossiiskoi Federatsii na period do 2030 goda. Proekt. Available: No date [Strategy for development of aquaculture in the Russian Federation for the period up to 2030. Project] (in Russ.).
  101. Fuchs R., Appelgren L.E., Hult K. Distribution of 14C-ochratoxin A in the rainbow trout (Salmo gairdneri). Acta Pharmacologica et Toxicologica (Copenh.), 1986, 59(3): 220-227 CrossRef
  102. Guan S., He J., Young J.C., Zhu H., Li X.-Z., Ji C., Zhou T. Transformation of trichothecene mycotoxins by microorganisms from fish digesta. Aquaculture, 2009, 290: 290-295 CrossRef
  103. Bernhoft A., Høgåsen H.R., Rosenlund G., Ivanova L., Berntssen M.H.G., Alexander J., Sundstøl Eriksen G., Kruse Fӕste C. Tissue distribution and elimination of deoxynivalenol and ochratoxin A in dietary exposed Atlantic salmon (Salmo salar). Food Additives and Contaminants. Part A,2017, 34(7): 1211-1224 CrossRef
  104. TR EAES 040/2016. Tekhnicheskii reglament Evraziiskogo ekonomicheskogo soyuza (EAES) «O bezopasnosti ryby i rybnoi produktsii»: prinyat resheniem Soveta Evraziiskoi ekonomicheskoi komissii ot 18.10.2016. № 162. Available: No date [EAEU TR 040/2016. Technical regulations of the Eurasian Economic Union (EAEU) “On the safety of fish and fish products”: adopted by the decision of the Council of the Eurasian Economic Commission dated 10/18/2016] (in Russ.).







Full article PDF (Rus)

Full article PDF (Eng)