doi: 10.15389/agrobiology.2021.2.279eng

UDC: 636.32/.38:575.1:577.2

The equipment of the Center for Biological Resources and Bioengineering of Agricultural Animals (Ernst Federal Science Center for Animal Husbandry) was used in the research. Supported financially from the Russian Foundation for Basic Research, project No. 17-29-08015.



Т.Е. Deniskova1 ✉, S.N. Petrov1, A.A. Sermyagin1, А.V. Dosev1,
М.S. Fornara1, H. Reyer2, К. Wimmers2, V.A. Bagirov1, G. Brem1, 3,
N.А. Zinovieva1

1Ernst Federal Science Center for Animal Husbandry, 60, pos. Dubrovitsy, Podolsk District, Moscow Province, 142132 Russia, e-mail (✉ corresponding author),,,,,,;
2Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Mecklenburg-Vorpommern, 18196 Dummerstorf, Germany, e-mail,;
3Institut für Tierzucht und Genetik, University of Veterinary Medicine (VMU), Veterinärplatz, A-1210, Vienna, Austria, e-mail (✉ corresponding author),,

Deniskova T.E.
Reyer H.
Petrov S.N.
Wimmers K.
Sermyagin A.A.
Bagirov V.A.
Dotsev A.V.
Brem G.
Fornara M.S.
Zinovieva N.A.

Received January 15, 2021

Body weight is one of the most important economically useful traits, which is characterized by complex inheritance. Therefore, a search for genetic mechanisms affecting its formation is of increased scientific interest. This work presents for the first time the results of the genome-wide association studies in the resource population of sheep (Ovis aries) from backcross (Romanov × Katah-din) × Romanov family, whose body weight was recorded in age dynamics, and SNP profiles were obtained using a high-density DNA chip. We identified 38 SNPs significantly associated with body weight (p < 0.00001) and functional candidate genes which affect skeletal muscle growth, bone scaffold formation, lipid, and carbohydrate metabolism. In addition, age-related changes in the set of significantly significant SNPs are shown. Our aim was to search for genomic variants that affect the body weight of (Romanov × Katahdin) × Romanov backcrosses from the resource population at different age periods. The study was performed on 95 sheep from backcross (Romanov × Katahdin) × Romanov family (Ernst Federal Research Center for Animal Husbandry, 2018-2021). Ear notch samples were taken from backcrosses for extraction of genomic DNA, which isolated using DNA-Extran-2 kits (Syntol LLC, Russia). Animals were genotyped using a high-density DNA chip Ovine Infinium® HD SNP BeadChip (Illumina, Inc., USA) containing ~600 thousand SNP markers. The body weight was recorded at the ages of 6(BW6), 42(BW42), 90(BW90), 180(BW180) and 270 days (BW270). To study genome-wide associations with body weight, we used regression analysis implemented in PLINK 1.90 (--assoc --adjust --qt-means). To confirm the significant effect of SNP and to identify significant regions in the genome of the studied sheep, a test was performed to check null hypotheses according to Bonferroni at a threshold value of p < 1.09×10-7, 0.05/459868. The search for candidate genes located in the region of identified SNPs was performed using the VEP (Ensembl Variant Effect Predictor) tool of Ensembl genome browser 103 ( After quality control, 459,868 SNPs were used to perform genome-wide association studies (GWAS). Average body weights in the studied sample were 3.28±0.07, 8.03±0.21, 13.74±0.39, 20.19±0.51, and 22.51±0.50 kg at the age of 6, 42, 90, 180, and 270 days, respectively. We found that in different age periods the set of SNPs associated with the integral indicator of the growth rate, the animal body weight, was different. Thus, out of 38 identified SNPs, 18 SNPs located on OAR2, OAR4, OAR9, and OAR15 were reliably associated with BW6 (p < 0.00001); 3 SNPs located on OAR6 and OAR11 with BW42 (p < 0.00001); 2 SNPs located on OAR10 and OAR19 with BW90 (p < 0.00001); 6 SNPs (p < 0.00001) located on OAR1 and OAR13 with BW180 (p < 0.00001) and 6 SNPs located on OAR1 with BW270 (p < 0.00001). Blocks of 3-5 SNPs were found on OAR1, OAR2, OAR4, and OAR5. Significance levels for six SNPs, including oar3_OAR4_87887519 (p < 7.13×10-8), oar3_OAR4_87889243(p < 1.51×10-7), oar3_OAR9_89145258 (p < 4.95×10-7), oar3_OAR1_192662599 (p < 4.79×10-7), OAR1_208070059.1 (p < 4.79×10-7) and oar3_OAR13_31446454 (p < 6.84×10-7) exceeded the threshold for GWAS (p < 1.09×10-7). Along with known candidate genes associated with body weight in sheep, we found new candidate genes whose effects on this trait have not been previously reported. The functional annotation of the identified candidates showed the presence of genes affecting skeletal muscle growth, bone frame formation, lipid, and carbohydrate metabolism. The obtained data will be useful for the development of marker and genomic selection programs in sheep breeding.

Keywords: domestic sheep, resource population, SNP markers, DNA chips, GWAS, body weight, candidate genes.



  1. Jaquiery A.L., Oliver M.H., Bloomfield F.H., Harding J.E. Periconceptional events perturb postnatal growth regulation in sheep. Pediatric Research, 2011, 70(3): 261-266 CrossRef
  2. Khaiitov A.Kh., Dzhuraeva U.Sh. Izvestiya Sankt-Peterburgskogo gosudarstvennogo agrarnogo universiteta, 2017, 3(48): 72-80 (in Russ.).
  3. Somova M.M., Mel'nikova E.E., Abramova M.V., Konovalov A.V., Nikitin S.A., Sermyagin A.A. Zootekhniya, 2020, 8: 12-16 (in Russ.).
  4. Trukhachev V.I., Selionova M.I., Krivoruchko A.YU., Aibazov A.M.M. Genetic markers of meat productivity of sheep (Ovis aries L.). I. Myostatin, calpain, calpastatin (review). Agricultural Biology [Sel'skokhozyaistvennaya biologiya], 2018, 53(6): 1107-1119 CrossRef
  5. Sermyagin A.A., Belous A.A., Trebunskikh E.A., Zinov'eva N.A. Feeding behavior as the new breeding traits in pigs. Agricultural Biology [Sel'skokhozyaistvennaya biologiya], 2020, 55(6): 1126-1138 CrossRef
  6. Zhang L., Liu J., Zhao F., Ren H., Xu L., Lu J., Zhang S., Zhang X., Wei C., Lu G., Zheng Y., Du L. Genome-wide association studies for growth and meat production traits in sheep. PLoS ONE,2013, 8(6): e66569 CrossRef
  7. Al-Mamun H.A., Kwan P., Clark S.A., Ferdosi M.H., Tellam R., Gondro C. Genome-wide association study of body weight in Australian Merino sheep reveals an orthologous region on OAR6 to human and bovine genomic regions affecting height and weight. Genetics Selection Evolution, 2015, 47(1): 66 CrossRef
  8. Matika O., Riggio V., Anselme-Moizan M., Law A.S., Pong-Wong R., Archibald A.L., Bishop S.C. Genome-wide association reveals QTL for growth, bone and in vivo carcass traits as assessed by computed tomography in Scottish Blackface lambs. Genetics Selection Evolution, 2016, 48: 11 CrossRef
  9. Ghasemi M., Zamani P., Vatankhah M., Abdoli R. Genome-wide association study of birth weight in sheep. Animal, 2019, 13(9): 1797-1803 CrossRef
  10. Lu Z., Yue Y., Yuan C., Liu J., Chen Z., Niu C., Sun X., Zhu S., Zhao H., Guo T., Yang B. Genome-wide association study of body weight traits in Chinese fine-wool sheep. Animals, 2020, 10(1): 170 CrossRef
  11. Pasandideh M., Gholizadeh M., Rahimi-Mianji G. A genome-wide association study revealed five SNP affecting 8-month weight in sheep. Animal Genetics, 2020, 51(6): 973-976 CrossRef
  12. Cao Y., Song X., Shan H., Jiang J., Xiong P., Wu J., Shi F., Jiang Y. Genome-wide association study of body weights in Hu sheep and population verification of related single-nucleotide polymorphisms. Frontiers in Genetics, 2020, 11: 588 CrossRef
  13. Zlobin A.S., Nikulin P.S., Volkova N.A., Zinovieva N.A., Iolchiev B.S., Bagirov V.A., Borodin P.M., Aksenovich T.I., Tsepilov Y.A. Multivariate analysis identifies eight novel loci associated with meat productivity traits in sheep. Genes, 2021, 12(3): 367 CrossRef
  14. Ledur M.C., Navarro N., Pérez-Enciso M. Large-scale SNP genotyping in crosses between outbred lines: how useful is it? Heredity,2009, 105: 173-182 CrossRef
  15. Deniskova T.E., Dotsev A.V., Petrov S.N., Fornara M.S., Reier KH., Vimmers K., Bagirov V.A., Brem G., Zinov'eva N.A. Agrarnaya nauka Evro-Severo-Vostoka, 2019, 20(5): 498-507 CrossRef (in Russ.).
  16. Chang C.C., Chow C.C., Tellier L.C., Vattikuti S., Purcell S.M., Lee J.J. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience, 2015, 4(7): 1-16 CrossRef
  17. Turner S.D. qqman: an R package for visualizing GWAS results using Q-Q and manhattan plots. biorXiv CrossRef
  18. R Core Team (2018). R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. Rezhim dostupa: Bez daty.
  19. McLaren W., Gil L., Hunt S.E., Riat H.S., Ritchie G.R., Thormann A., Flicek P., Cunningham F. The Ensembl Variant Effect Predictor. Genome Biology, 2016, 17(1): 122 CrossRef
  20. Da Wei H., Sherman B.T., Lempicki R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 2009, 4(1): 44-57 CrossRef
  21. Hu Z.L., Park C.A., Reecy J.M. Building a livestock genetic and genomic information knowledgebase through integrative developments of Animal QTLdb and CorrDB. Nucleic Acids Research, 2019, 47(D1): D701-D710 CrossRef
  22. Du Y., Liu B., Guo F., Xu G., Ding Y., Liu Y., Sun X., Xu G. The essential role of Mbd5 in the regulation of somatic growth and glucose homeostasis in mice. PLoS ONE, 2012, 7(10): e47358 CrossRef
  23. Chung B.H., Stavropoulos J., Marshall C.R., Weksberg R., Scherer, S.W., Yoon G. 2q23 de novo microdeletion involving the MBD5 gene in a patient with developmental delay, postnatal microcephaly and distinct facial features. American Journal of Medical Genetics. Part A, 2011, 155(2): 424-429 CrossRef
  24. Bravo-Oro A., Lurie I.W., Elizondo-Cárdenas G., Peña-Zepeda C., Salazar-Martínez A., Correa-González C., Castrillo J.L., Avila S., Esmer C. A novel interstitial deletion of 2q22.3 q23.3 in a patient with dysmorphic features, epilepsy, aganglionosis, pure red cell aplasia, and skeletal malformations. American Journal of Medical Genetics. Part A, 2015, 167(8): 1865-1871 CrossRef
  25. Klingseisen A., Jackson A.P. Mechanisms and pathways of growth failure in primordial dwarfism. Genes & Development, 2011, 25(19): 2011-2024 CrossRef
  26. de Munnik S.A., Hoefsloot E.H., Roukema J., Schoots J., Knoers N.V., Brunner H.G., Jackson A.P., Bongers E.M. Meier-Gorlin syndrome. Orphanet Journal of Rare Diseases,2015, 10: 114 CrossRef
  27. Goh B.C., Singhal V., Herrera A.J., Tomlinson R.E., Kim S., Faugere M.C., Germain-Lee E.L., Clemens T.L., Lee S.J., DiGirolamo D.J. Activin receptor type 2A (ACVR2A) functions directly in osteoblasts as a negative regulator of bone mass. The Journal of Biological Chemistry, 2017, 292(33): 13809-13822 CrossRef
  28. Rovadoscki G.A., Pertile S.F.N., Alvarenga A.B., Cesar A.S.M., Pértille F., Petrini J., Franzo V., Soares W.V.B., Morota G., Spangler M.L., Pinto L.F.B., Carvalho G.G.P., Lanna D.P.D., Coutinho L.L., Mourão G.B. Estimates of genomic heritability and genome-wide association study for fatty acids profile in Santa Inês sheep. BMC Genomics, 2018, 19(1): 375 CrossRef
  29. Arora R., Kumar N.S., Sudarshan S., Fairoze M.N., Kaur M., Sharma A., Girdhar Y., Sreesujatha R.M., Devatkal S.K., Ahlawat S., Vijh R.K., Manjunatha S.S. Transcriptome profiling of longissimus thoracis muscles identifies highly connected differentially expressed genes in meat type sheep of India. PLoS ONE, 2019, 14(6): e0217461 CrossRef
  30. Randhawa I.A.S., Khatkar M.S., Thomson P.C., Raadsma H.W. Composite selection signals for complex traits exemplified through bovine stature using multibreed cohorts of European and African Bos taurus.  G3 Genes|Genomes|Genetics, 2015, 5(7): 1391-1401 CrossRef
  31. Widmann P., Reverter A., Fortes M.R.S., Weikard R., Suhre K., Hammon H., Albrecht E., Kuehn C. A systems biology approach using metabolomic data reveals genes and pathways interacting to modulate divergent growth in cattle. BMC Genomics, 2013, 14: 798 CrossRef
  32. Doyle J.L., Berry D.P., Veerkamp R.F., Carthy T.R., Evans R.D., Walsh S.W., Purfield D.C. Genomic regions associated with muscularity in beef cattle differ in five contrasting cattle breeds. Genetics Selection Evolution, 2020, 52(1): 2 CrossRef
  33. Grigoletto L., Ferraz J., Oliveira H.R., Eler J.P., Bussiman F.O., Abreu Silva B.C., Baldi F., Brito L.F. Genetic architecture of carcass and meat quality traits in Montana Tropical® composite beef cattle. Frontiers in Genetics, 2020, 11: 123 CrossRef
  34. Liu X., Guo X.Y., Xu X.Z., Wu M., Zhang X., Li Q., Ma P.P., Zhang Y., Wang C.Y., Geng F.J., Qin C.H., Liu L., Shi W.H., Wang Y.C., Yu Y. Novel single nucleotide polymorphisms of the bovine methyltransferase 3b gene and their association with meat quality traits in beef cattle. Genetics and Molecular Research, 2012, 11(3): 2569-2577 CrossRef
  35. Gan Q., Li Y., Liu Q., Lund M., Su G., Liang X. Genome-wide association studies for the concentrations of insulin, triiodothyronine, and thyroxine in Chinese Holstein cattle. Tropical Animal Health and Production, 2020, 52(4): 1655-1660 CrossRef
  36. Hu Z., Wu J., Qin L., Jin H., Lv Y., Zhang R., Xiao C., Cao Y., Zhao Y. ALDH1A1 effect on Yan Yellow Cattle preadipocyte differentiation. Animal Biotechnology, 2019: 1-10 CrossRef
  37. Clark D.L., Boler D.D., Kutzler L.W., Jones K.A., McKeith F.K., Killefer J., Carr T.R., Dilger A.C. Muscle gene expression associated with increased marbling in beef cattle. Animal Biotechnology, 2011, 22(2): 51-63 CrossRef
  38. Zhang X., Hirschfeld M., Beck J., Kupke A., Köhler K., Schütz E., Brenig B. Osteogenesis imperfecta in a male holstein calf associated with a possible oligogenic origin. The Veterinary Quarterly, 2020, 40(1): 58-67 CrossRef
  39. An B., Xia J., Chang T., Wang X., Miao J., Xu L., Zhang L., Gao X., Chen Y., Li J., Gao H. Genome-wide association study identifies loci and candidate genes for internal organ weights in Simmental beef cattle. Physiological Genomics, 2018, 50(7): 523-531 CrossRef
  40. Milner J.M., Rowan A.D., Cawston T.E., Young D.A. Metalloproteinase and inhibitor expression profiling of resorbing cartilage reveals pro-collagenase activation as a critical step for collagenolysis. Arthritis Research & Therapy, 2006, 8(5): R142 CrossRef
  41. Zhang H., Takeda H., Tsuji T., Kamiya N., Rajderkar S., Louie K., Collier C., Scott G., Ray M., Mochida Y., Kaartinen V., Kunieda T., Mishina Y. Generation of Evc2/Limbin global and conditional KO mice and its roles during mineralized tissue formation. Genesis,2015, 53(9): 612-626 CrossRef
  42. Correa-Rodríguez M., Schmidt Rio-Valle J., Rueda-Medina B. AKAP11 gene polymorphism is associated with bone mass measured by quantitative ultrasound in young adults. International Journal of Medical Sciences, 2018, 15(10): 999-1004 CrossRef
  43. Oh J.H., Lee J.Y., Joung S.H., Oh Y.T., Kim H.S., Lee N.K. Insulin enhances RANKL-induced osteoclastogenesis via ERK1/2 activation and induction of NFATc1 and Atp6v0d2. Cellular Signalling, 2015, 27(12): 2325-2331 CrossRef
  44. Chen J., Tu X., Esen E., Joeng K.S., Lin C., Arbeit J.M., Rüegg M.A., Hall M.N., Ma L., Long F. WNT7B promotes bone formation in part through mTORC1. PLoS Genetics, 2014, 10(1): e1004145 CrossRef
  45. Sawai M., Uchida Y., Ohno Y., Miyamoto M., Nishioka C., Itohara S., Sassa T., Kihara A. The 3-hydroxyacyl-CoA dehydratases HACD1 and HACD2 exhibit functional redundancy and are active in a wide range of fatty acid elongation pathways. The Journal of Biological Chemistry, 2017, 292(37): 15538-15551 CrossRef
  46. Knigge A., Klöting N., Schön M.R., Dietrich A., Fasshauer M., Gärtner D., Lohmann T., Dreßler M., Stumvoll M., Kovacs P., Blüher M. ADCY5 gene expression in adipose tissue is related to obesity in men and mice. PLoS ONE, 2015, 10(3): e0120742 CrossRef
  47. Bagchi D.P., Li Z., Corsa C.A., Hardij J., Mori H., Learman B S., Lewis K.T., Schill R.L., Romanelli S.M., MacDougald O.A. Wntless regulates lipogenic gene expression in adipocytes and protects against diet-induced metabolic dysfunction. Molecular Metabolism, 2020, 39: 100992 CrossRef
  48. McDaneld T.G., Hannon K., Moody D.E. Ankyrin repeat and SOCS box protein 15 regulates protein synthesis in skeletal muscle. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 2006, 290(6): R1672-R1682 CrossRef
  49. Smith J.A., Curry E.G., Blue R.E., Roden C., Dundon S., Rodríguez-Vargas A., Jordan D.C., Chen X., Lyons S.M., Crutchley J., Anderson P., Horb M.E., Gladfelter A.S., Giudice J. FXR1 splicing is important for muscle development and biomolecular condensates in muscle cells. The Journal of Cell Biology, 2020, 219(4): e201911129 CrossRef
  50. Fukuda S., Kaneshige A., Kaji T., Noguchi Y.T., Takemoto Y., Zhang L., Tsujikawa K., Kokubo H., Uezumi A., Maehara K., Harada A., Ohkawa Y., Fukada S.I. Sustained expression of HeyL is critical for the proliferation of muscle stem cells in overloaded muscle. eLife, 2019, 8: e48284 CrossRef
  51. Wadhwa R., Yaguchi T., Kaur K., Suyama E., Kawasaki H., Taira K., Kaul S.C. Use of a randomized hybrid ribozyme library for identification of genes involved in muscle differentiation. The Journal of Biological Chemistry, 2004, 279(49): 51622-51629 CrossRef
  52. Picard B., Lefaucheur L., Berri C., Duclos M.J. Muscle fibre ontogenesis in farm animal species. Reproduction Nutrition Development, 2002, 42(5): 415-431 CrossRef
  53. Bonnet M., Cassar-Malek I., Chilliard Y., Picard B. Ontogenesis of muscle and adipose tissues and their interactions in ruminants and other species. Animal, 2010, 4(7), 1093-1109 CrossRef
  54. Roldan D.L., Dodero A.M., Bidinost F., Taddeo H.R., Allain D., Poli M.A., Elsen J.M. Merino sheep: a further look at quantitative trait loci for wool production. Animal, 2010, 4(8):1330-1340 CrossRef
  55. Matika O., Sechi S., Pong-Wong R., Houston R.D., Clop A., Woolliams J.A., Bishop S.C. Characterization of OAR1 and OAR18 QTL associated with muscle depth in British commercial terminal sire sheep. Animal Genetics, 2011, 42(2): 172-180 CrossRef
  56. Cavanagh C.R., Jonas E., Hobbs M., Thomson P.C., Tammen I., Raadsma H.W. Mapping Quantitative Trait Loci (QTL) in sheep. III. QTL for carcass composition traits derived from CT scans and aligned with a meta-assembly for sheep and cattle carcass QTL. Genetics Selection Evolution, 2010, 42(1): 36 CrossRef







Full article PDF (Rus)

Full article PDF (Eng)