doi: 10.15389/agrobiology.2019.2.291eng

UDC: 636.52/.58:636.084.416:579.6

Supported financially by Russian Science Foundation (agreement № 17-16-01028)



V.I. Fisinin1, V.S. Lukashenko1, I.P. Saleeva1, G.Yu. Laptev2, L.A. Ilina2, V.G. Volik3, D.Yu. Ismailova3

1Federal Scientific Center All-Russian Research and Technological Poultry Institute RAS, 10, ul. Ptitsegradskaya, Sergiev Posad, Moscow Province, 141311 Russia, e-mail, (✉ corresponding author),;
2JSC «Biotrof+», 19 korp. 1, Zagrebskii bulv., St. Petersburg, 192284 Russia, e-mail,;
3All-Russian Research Institute of Poultry Processing Industry — Branch of Federal Scientific Center All-Russian Research and Technological Poultry Institute RAS, 1, Rzhavki, Solnechnogorsk Region, Moscow Province, 141552, e-mail,

Fisinin V.I.
Ilina L.A.
Lukashenko V.S.
Volik V.G.
Saleeva I.P.
Ismailova D.Yu.
Laptev G.Yu.

Received December 3, 2018


The use of new animal-derived protein ingredients in commercial diets for poultry as a substitute for the expensive fishmeal is an urgent direction of the nutritional research. At present a range of new additives is designed based on the wastes of poultry slaughter and processing. In this paper, we first report the results of comparative analysis of the bacterial community in blind processes of the intestines of broiler chickens fed with dietary protein-rich additives derived from keratin- and collagen-containing waste products after short-term high-temperature enzymatic hydrolysis in a thin layer. These findings show possibility of using new feed additives to increase the productivity and quality of broiler meat. Our study was aimed at the evaluation of the effects of the feed additives based on keratin- and collagen-containing wastes on the intestinal microbiota counts and composition in conjunction with productive performance of broiler chicks. The chicks (Gallus gallus L.) of Ross 308 cross were reared at the Vivarium of All-Russian Research and Technological Institute of Poultry (Moscow Province) on the floor until 38 or 49 days of age. Control Treatment (Trt) 1 was fed standard diet with fishmeal as the main protein source. In the diet for Trt 2 the fishmeal was substituted by a hydrolysate of keratin-containing wastes (poultry feathers); in Trt 3 by a hydrolysate of collagen-containing wastes of poultry deboning; in Trt 4 by a mixture of these additives with additional supplementation with probiotic Bacell-M (containing Bacillus subtilis, Lactobacillus paracasei, Enterococcus faecium). The counts and composition of cecal microbiota in broilers were determined using Terminal Restriction Fragment Length Polymorphism (T-RFLP) technique. The live weight at 38 and 49 days of age (individual weighing), average daily weight gain, livestock safety, feed costs per 1 kg of live weight, grade and weight of gutted carcasses, meat yield of carcasses and meat qualities, digestibility and use nutrient feed were recorded. The protein additives based on the hydrolysates of poultry wastes do not compromise the composition of cecal microbiota in broilers, and the obligate species were abundant with all diets studied. Cellulolytic Clostridia class (phylum Firmicutes) including families Ruminococcaceae, Eubacteriaceae, Lachnospiraceae, Clostridiaceae etc. dominated in the cecal microbial communities. The additives beneficially affected the productive performance in broilers. The best productivity parameters were in broilers fed diets with the hydrolysate of keratin-containing material (Trt 2) and a mixture of the hydrolysates of keratin- and collagen-containing wastes with the probiotic (Trt 4). Average live bodyweight at 38 and 49 days of age in Trt 2 was significantly higher, by 9.2 % (p < 0.01) and 10.1 % (p < 0.001), respectively, as compared to control Trt 1. Mortality level in Trt 2 was 0 % while feed conversion ratio (FCR) at 38 and 49 days of age was 6.32 and 7.28 % better compared to control. Average live bodyweight in Trt 4 at 38 days of age was 5.3 % higher, and FCR was 2.87 % better compared to control; at 49 days of age these parameters were better in compare to control by 4.96 and 4.37 %, respectively, while mortality in Trt 4 during 38 and 49 days of rearing was 0 %.

Keywords: broiler chicks, Ross 308 cross, keratin- and collagen-containing materials, enzymatic hydrolysis, cecal microbiota, productive performance, meat quality.




  1. Mateos G.G., Lázaro R.M., Gracia I. Feasibility of using nutritional modifications to replace drugs in poultry feeds. The Journal of Applied Poultry Research, 2002, 11(4): 437-452 CrossRef
  2. Birger S. Function of the digestive system. The Journal of Applied Poultry Research, 2014, 23(2): 306-314 CrossRef
  3. Pervova A. [Effects of probiotics in commercial poultry]. Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2003, 4: 24-28 (in Russ.).
  4. Rehman H.U., Vahjen W., Awad W.A., Zentek J. Indigenous bacteria and bacterial metabolic products in the gastrointestinal tract of broiler chickens. Archives of Animal Nutrition, 2007, 61(5): 319-335 CrossRef
  5. Koutsos E.A., Arias V.J. Intestinal ecology: Interactions among the gastrointestinal tract, nutrition, and the microflora. The Journal of Applied Poultry Research, 2006, 15(1): 161-173 CrossRef
  6. Tellez G., Higgins S.E., Donoghue A.M., Hargis B.M. Digestive physiology and the role of microorganisms. The Journal of Applied Poultry Research, 2006, 15(1): 136-144 CrossRef
  7. Fisinin V.I., Surai P. Gut immunity in birds: facts and reflections (review). Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2013, 4: 3-25 CrossRef (in Engl.).
  8. Kohl K.D. Diversity and function of the avian gut microbiota. J. Comp. Physiol. B, 2012, 182(5): 591-602 CrossRef
  9. Zhu X.Y., Zhong T., Pandya Y., Joerger R.D. 16S rRNA-bassed analysis of microbiota from the cecum of broiler chickens. Appl. Environ. Microbiol., 2002, 68(1): 124-137 CrossRef
  10. Amit-Romach E., Sklan D., Uni Z. Microflora ecology of the chicken intestine using 16S ribosomal DNA primers. Poultry Science, 2004, 83(7): 1093-1098 CrossRef
  11. Owens B., Tucker L., Collins M.A., McCracken K.J. Effects of different feed additives alone or in combination on broiler performance, gut microflora and ileal histology. British Poultry Science, 2008, 49(2): 202-212 CrossRef
  12. Hold G.L., Schwiertz A., Aminov R.I., Blaut M., Flint H.J. Oligonucleotide probes that detect quantitatively significant groups of butyrate-producing bacteria in human feces. Appl. Environ. Microbiol., 2003, 69: 4320-4324 CrossRef
  13. Stanley D., Denman S.E., Hughes R.J., Geier M.S., Crowley T.M., Chen H., Haring V.R., Moore R.J. Intestinal microbiota associated with differential feed conversion efficiency in chickens. Appl. Microbiol. Biotechnol., 2012, 96(5): 1361-1369 CrossRef
  14. Stanley D., Hughes R.J., Moore R.J. Microbiota of the chicken gastrointestinal tract: influence on health, productivity and disease. Appl. Microbiol. Biotechnol., 2014, 98(10): 4301-4310 CrossRef
  15. Gaggìa F., Mattarelli P., Biavati B. Probiotics and prebiotics in animal feeding for safe food production. International Journal of Food Microbiology, 2010, 141: S15-S28 CrossRef
  16. Laptev G., Nikonov I., Kryazhevskikh L., Egorov I. Ptitsevodstvo, 2010, 9: 25 (in Russ.).
  17. Oakley B.B., Lillehoj H.S., Kogut M.H., Kim W.K., Maurer J.J., Pedroso A., Lee M.D., Collett S.R., Johnson T.J., Cox N.A. The chicken gastrointestinal microbiome. FEMS Microbiology Letters, 2014, 360(2): 100-112 CrossRef
  18. Apajalahti J. Comparative gut microflora, metabolic challenges, and potential opportunities. The Journal of Applied Poultry Research, 2005, 14(2): 444-453 CrossRef
  19. Rinttilä T., Apajalahti J. Intestinal microbiota and metabolites-Implications for broiler chicken health and performance. The Journal of Applied Poultry Research, 2013, 22(3): 647-658 CrossRef
  20. Kogut M.H. The gut microbiota and host innate immunity: regulators of host metabolism and metabolic diseases in poultry? The Journal of Applied Poultry Research, 2013, 22(3): 637-646 CrossRef
  21. Roberts T., Wilson J., Guthrie A., Cookson K., Vancraeynest D., Schaeffer J., Moody R., Clark S. New issues and science in broiler chicken intestinal health: emerging technology and alternative interventions. The Journal of Applied Poultry Research, 2015, 24(2): 257-266 CrossRef
  22. Laptev G. Materialy XVII Mezhdunarodnoi konferentsii (VNAP) «Innovatsionnye razrabotki i ikh osvoenie v promyshlennom ptitsevodstve» [Proc. XVII Int. Conf. «Innovations and their use in industrial poultry farming»]. Sergiev Posad, 2012: 212-215 (in Russ.).
  23. Metodicheskie rekomendatsii po tekhnologii proizvodstva myasa broilerov /Pod redaktsiei V.I. Fisinina, T.A. Stollyara, V.S. Lukashenko [Guidelines for broiler meat production technology. V.I. Fisinin, T.A. Stollyar, V.S. Lukashenko (eds.)]. Sergiev Posad, 2008 (in Russ.).
  24. Metodika provedeniya nauchnykh i proizvodstvennykh issledovanii po kormleniyu sel'skokhozyaistvennoi ptitsy. Molekulyarno-geneticheskie metody opredeleniya mikroflory kishechnika /Pod redaktsiei V.I. Fisinina [Methods of original research and farm trials of poultry feeding. Molecular genetic methods for intestinal microflora survey. V.I. Fisinin  (ed.)]. Sergiev Posad, 2013 (in Russ.).
  25. Lee K.C., Kil D.Y., Sul W.J. Cecal microbiome divergence of broiler chickens by sex and body weight. J. Microbiol., 2017, 55(12): 939-945 CrossRef
  26. Broom L.J., Kogut M.H. The role of the gut microbiome in shaping the immune system of chickens. Veterinary Immunology and Immunopathology, 2018, 204: 44-51 CrossRef
  27. Wei S., Morrison M., Yu Z. Bacterial census of poultry intestinal microbiome. Poultry Science, 2013, 92(3): 671-683 CrossRef
  28. Gaspar C., Donders G.G., Palmeira-de-Oliveira R., Queiroz J.A., Tomaz C., Martinez-de-Oliveira J., Palmeira-de-Oliveira A. Bacteriocin production of the probiotic Lactobacillus acidophilus KS400. AMB Express, 2018, 8(1): 153 CrossRef
  29. Nanjundan J., Ramasamy R., Uthandi S., Ponnusamy M. Antimicrobial activity and spectroscopic characterization of surfactin class of lipopeptides from Bacillus amyloliquefaciens SR1. Microbial Pathogenesis, 2019, 128: 374-380 CrossRef
  30. Torok V.A., Hughes R.J., Mikkelsen L.L., Perez-Maldonado R., Balding K., MacAlpine R., Percy N.J., Ophel-Keller K. Identification and characterization of potential performance-related gut microbiota in broiler chickens across various feeding trials. Appl. Environ. Microbiol., 2011, 77(17): 5868-5878 CrossRef
  31. Witzig M., Camarinha-Silva A., Green-Engert R., Hoelzle K., Zeller E., Seifert J., Hoelzle L.E., Rodehutscord M. Correction: spatial variation of the gut microbiota in broiler chickens as affected by dietary available phosphorus and assessed by T-RFLP analysis and 454 pyrosequencing. PLoS ONE, 2015, 10(12): e0145588 CrossRef
  32. Fisinin V., Egorov I., Egorova T., Lenkova T., Manukyan V., Grozina A., Laptev G., Novikova N., Il'ina L., Iyldyrym E., Nikonov I., Fillipova V., Dubrovin A. Kombikorma, 2016, 12: 94-96 (in Russ.).
  33. Salaheen S., Kim S.-W., Haley B.J., Van Kessel J.A.S., Biswas D. Alternative growth promoters modulate broiler gut microbiome and enhance body weight gain. Front. Microbiol., 2017, 8: 2088 CrossRef
  34. Mesa D., Lammel D.R., Balsanelli E., Sena C., Noseda M.D., Caron L.F., Cruz L.M., Pedrosa F.O., Souza E.M. Cecal microbiota in broilers fed with prebiotics. Front.Genet., 2017, 8: 153 CrossRef
  35. Fisinin V.I., Egorov I.A., Manukyan V.A., Laptev G.Yu., Nikonov I.N., Il'ina L.A., Novikova N.I. Ptitsa i ptitseprodukty, 2014, 6: 37-39 (in Russ.).
  36. Rubio L.A. Possibilities of early life programming in broiler chickens via intestinal microbiota modulation. Poultry Science, 2019, 98(2): 695-706 CrossRef
  37. Jankowski J., Juskiewicz J., Gulewicz K., Lecewicz A., Slominski B.A., Zdunczyk Z. The effect of diets containing soybean meal, soybean protein concentrate, and soybean protein isolate of different oligosaccharide content on growth performance and gut function of young turkeys. Poultry Science, 2009, 88: 2132-2140 CrossRef
  38. Iyldyrym E.A., Il'ina L.A., Nikonov I.N., Novikova N.I., Laptev G.Yu., Manukyan  V.A., Egorov I.A. Ptitsa i ptitseprodukty, 2014, 3: 40-42 (in Russ.).
  39. Laptev G.Yu., Novikova N.I., Nikonov I.N., Il'ina L.A., Iyldyrym E.A., Filippova  V.A., Brazhnik E.A., Egorov I.A., Egorova T.V. Zootekhniya, 2014, 12: 29-30 (in Russ.).






Full article PDF (Rus)

Full article PDF (Eng)