doi: 10.15389/agrobiology.2018.2.302eng

UDC 636.018:612.017.1:616-056.43

 

CYTOGENETIC STATUS OF MARES (Equus caballus) OF UKRAINIAN
RIDING BREED INFLUENCES THEIR FERTILITY

A.V. Tkachåv1, O.L. Tkachåva2, V.I. Rossokha2

1National University of Pharmacy, 53, vul. Pushkinskaya, Kharkov, Ukraine, 61002, e-mail sasha_sashaola@mail.ru (✉ corresponding author);
2Institute of Animal Science of National academy of agrarian sciences of Ukraine, 3,vul. 7-i Gvardeiskoi Armii, Kharkov, 61120 Ukraine, e-mail tkacheva.olga2017@gmail.com, rossokha.v@ukr.net

ORCID:
Tkachåv A.V. orcid.org/0000-0002-7721-5742
Rossokha V.I. orcid.org/0000-0001-8709-7535
Tkachåva O.L. orcid.org/0000-0002-5573-6117

Received September 4, 2017

 

Cytogenetic studies of mares are widely used in practice (in case of embryonic death this is a mandatory test) in countries with developed horse breeding. Genetic evaluation of Equus caballus is also widely performed. Nevertheless, in the available literature, we could not find publications on the relationship between cytogenetic disorders in mares and the effectiveness of artificial insemination with frozen and thawed sperm. This paper is the first report on the impact of the cytogenetic status of mares E. caballus of Ukrainian horse breed on their sexual cycle and the efficacy of the artificial insemination by Kharkov technology. It has been shown that in case of ovary hypofunction caused by an increased chromosomal variability, as estimated by the per cent of aberrant metaphases with no genome mutations and the transmitted cytogenetic disturbances found, it is necessary to divide the mares into three groups: up to 5 %, from 5 to 10 % and over 10 % overall chromosomal instability. This allows better characterization of mares’ physiological condition to optimized treatment and the artificial insemination procedure by Kharkov technology. When cooled semen used, the fertility of the mares having more than 10 % aberrant metaphases was the lowest, by 29.81 and 31.86 % less (ð < 0.01) compared to mares from the groups with lower chromosomal instability. When thawed semen was used, the fertility was the highest in the mares with the chromosomal instability up to 5 %, that is, on average 14.93 % higher (ð < 0.05) compared to the mares with more than 5 % of metaphases with aberrations. The influence of cytogenetic status on the fertility in the insemination was clearly seen when the cryopreserved semen was used as compared to cooled semen. The fertility of the mares inseminated with cryopreserved sperm averaged was 71.60 % in group 1 (up to 5 % aberrant metaphases), 56.67 % in group 2 (5-10 % aberrant metaphases), and only 37.04 % in group 3 (> 10 % aberrant metaphases). So, estimation of cytogenetic status ensures optimization of artificial insemination and an increase in mares’ fertility when used cooled and frozen-thawed semen.

Keywords: Equus caballus, cytogenetic status of mares, fertility, aberrations.

 

Full article (Rus)

Full article (Eng)

 

REFERENCES

  1. Aldridge L.I., Kelleher D.L., Reilly M., Brophy P.O. Estimation of the genetic correlation between performances at different levels of show jumping competition in Ireland. J. Anim. Breed. Genet., 2000, 117: 65-72 CrossRef
  2. Shubertova Z., Candrak J., Rolinec M. Genetic evaluation of show jumping horses in the Slovak Republic. Ann. Anim. Sci., 2016, 16(2): 387-398 CrossRef
  3. Stefaniuk-Szmukier M., Ropka-Molik K., Zagrajczuk A., Piorkowska K., Szmatola T., Luszczynski J., Bugno-Poniewierska M. Genetic variability in equine GDF9 and BMP15 genes in Arabian and Thoroughbred mares. Ann. Anim. Sci., 2018, 18(1): 39-52 CrossRef
  4. Zabek T., Semik E., Fornal A., Bungo-Poniewierska M. Genetic variation of two horse breeds in Cpg islands of Oas1 locus. Ann. Anim. Sci., 2014, 14(4): 841-850 CrossRef
  5. Curik I., Zechner P., Sölkner J., Achmann R., Bodo I., Dovc P., Kavar T., Marti E., Brem G. Inbreeding, microsatellite heterozygosity, and morphological traits in Lipizzan horses. J. Hered., 2003, 94: 125-132 CrossRef
  6. Khanshour A., Juras R., Blackburn R., Cothran E.G. The legend of the Canadian Horse: genetic diversity and breed origin.J. Hered., 2015, 106(1): 37-44 CrossRef 
  7. Ducro B.J., Koenen E.P.C., Tartwijk J.M.F.M., Bovenhuis H. Genetic relations of movement and free-jumping traits with dressage and show-jumping performance in competition of Dutch Warmblood horses. Livest. Sci., 2007, 107: 227-234 CrossRef
  8. Druml T., Grilz-Seger G., Neuditschko M., Neuhauser B., Brem G. Phenotypic and genetic analysis of the leopard complex spotting in Noriker horses. J. Hered., 2017, 108(5): 505-514 CrossRef
  9. Collins C.W., Songsasen N.S., Vick M.M., Wolfe B.A., Weiss R.B. Abnormal reproductive patterns in Przewalski's mares are associated with a loss in gene diversity. Biol. Reprod., 2012, 86(2): 1-10 CrossRef
  10. Tkachev A.V., Sheremeta V.I., Tkacheva O.L., Rossokha V.I. Physiological relationship of erythrocyne antigens with indicators of horse spermogram. Fiziol. Zh., 2017, 63(1): 84-90 CrossRef
  11. Choi Y.H., Love C.C., Chung Y.G., Varner D.D., Westhusin M.E., Burghardt R.C., Hinrichs K. Production of nuclear transfer horse embryos by Piezo-driven injection of somatic cell nuclei and activation with stallion sperm cytosolic extract. Biol. Reprod., 2002, 67(2): 561-567 CrossRef
  12. McPartlin L.A., Suarez S.S., Czaya C.A., Hinrichs K., Bedford-Guaus S.J. Hyperactivation of stallion sperm is required for successful in vitro fertilization of equine oocytes. Biol. Reprod., 2009, 81(1): 199-206 CrossRef
  13. Moskalets V.V., Moskalets T.Z., Vasylkivskyi S.P., Grynyk I.V., Vovkohon A.H., Tarasyuk S.I., Rybalchenko V.K. Adaptability and stability mechanisms of Triticeae tribe to epiphytoparasites in anthropical ecosystem. Ukrainian Journal of Ecology, 2017, 7(2): 230-238 CrossRef
  14. Taguchi T., Kubota S., Mezaki T., Tagami E., Sekida S., Nakachi S., Okuda K., Tominaga A. Identification of homogeneously staining regions by G-banding and chromosome microdissection, and FISH marker selection using human Alu sequence primers in a scleractinian coral Coelastrea aspera Verrill, 1866 (Cnidaria). Comp. Cytogenet., 2016, 10(1): 61-75 CrossRef
  15. Dean W., Santos F., Reik W. Epigenetic reprogramming in early mammalian development and following somatic nuclear transfer. Seminars in Cell and Developmental Biology, 2003, 14: 93-100 CrossRef
  16. Savina N.V., Smal' M.P., Kuzhir T.D. Molekulyarnaya i prikladnaya genetika, 2008, 10: 108-114 (in Russ.).
  17. Kosowska B., Strza?a T., Moska M. Vestnik zoologii, 2015, 49(6): 529-536 CrossRef (in Russ.).
  18. Perevozkin V.P., Bondarchuk S.S., Manich A.S. Genetika, 2015, 51(8): 924-933 (in Russ.).
  19. Pawlina K., Bugno-Poniewierska M. The application of zoo-fish technique for analysis of chromosomal rearrangements in the Equidae family. Ann. Anim. Sci., 2012, 12(1): 5-13 CrossRef
  20. Danielak-Czech B., Rejduch B., Kozubska-Soboci?ska A. Identification of telomeric sequences in pigs with rearranged karyotype using prins technique /Identyfikacja sekwencji telomerowych u ?wi? z rearan?acj? kariotypu przy wykorzystaniu techniki PRINS. Ann. Anim. Sci., 2013, 13(3): 495-502 CrossRef
  21. Warcha?owska-?liwa E., Grzywacz B., Heller K.G., Chobanov D.P. Comparative analysis of chromosomes in the Palaearctic bush-crickets of tribe Pholidopterini (Orthoptera, Tettigoniinae). Comp. Cytogenet., 2017, 11(2): 309-324 CrossRef
  22. Sadílek D., Angus R.B.,ŠTáhlavský F., Vilímová J. Comparison of different cytogenetic methods and tissue suitability for the study of chromosomes in Cimex lectularius (Heteroptera, Cimicidae). Comp. Cytogenet., 2016, 10(4): 731-752 CrossRef
  23. Tkachov O.V. Pristr³i atravmatichnii dlya shtuchnogo os³men³nnya kobil. Patent Ukra¿ni na korisnu model' ¹ 105004, MPK A61D 19/02. Zayavl. 05.10.2015. Opubl. 25.02.2016. Byul. ¹ 4 [Devise for non-traumatic artificial insemination of mares. Patent of Ukraine ¹ 105004, MPK À61D 19/02. Appl. 05.10.2015. Publ. 25.02.2016. Bul. ¹ 4] (in Russ.).
  24. Plokhinskii N.A. Rukovodstvo po biometrii dlya zootekhnikov [Guide to biometrics for livestock specialists]. Moscow, 1969 (in Russ.).
  25. Wejer J., Lewczuk D. Effect of the age on the evaluation of horse conformation and movement.  Ann. Anim. Sci., 2016, 16(3): 863-870 CrossRef
  26. Melo C.M., Papa F.O., Fioratti E.G., Magalhaes L.C.O., Alvarenga M.A. Application of equine epididymal sperm. Biol. Reprod., 2010, 83(Suppl_1): 672-680 CrossRef
  27. Robeck T.R., Steinman K.J., Gearhart S., Reidarson T.R., McBain J.F., Monfort S.L. Reproductive physiology and development of artificial insemination technology in killer whales (Orcinus orca). Biol. Reprod., 2004, 71(2): 650-660 CrossRef
  28. Lindsey A.C., Morris L.H., Allen W.R., Schenk J.L., Squires E.L., Bruemmer J.E. Hysteroscopic insemination of mares with low numbers of nonsorted or flow sorted spermatozoa. Equine Vet. J., 2002, 34: 128-132 CrossRef
Lindsey A.C., Schenk J.L., Graham J.K., Bruemmer J.E., Squires E.L. Hysteroscopic insemination of low numbers of flow sorted fresh and frozen/thawed stallion spermatozoa. Equine Vet. J., 2002, 34: 121-127 CrossRef

 

back