doi: 10.15389/agrobiology.2018.2.393eng

UDC 636.52/.58.084:636.085.12

Samples were analyzed in the Laboratory of Agroecology of Nanomaterials, Test Center of All-Russian Research Institute of Beef CattleBreeding RAS (ARRIBCB RAS, accreditation certificate RA. RU.21PF59 of 12/02/15) using equipment of the Shared Use Center, ARRIBCB RAS. hemical analysis was performed in the laboratory of ANO Center for Biotic Medicine, Moscow (accreditation certificate GSEN.RU.TSAO.311, registration number in the State Register ROSS RU. 0001.513118)
Supported financially by Russian Sciene Foundation (project 14-16-00060-)



.. Sizova1, 2, S.. Miroshnikov1, S.V. Lebedev1, 2, Yu.I. Levakhin1,
I.. Babicheva3, V.I. Kosilov3

1Federal Research Centre of Biological Systems and Agrotechnologies RAS, Federal Agency of Scientific Organizations, 29, ul. 9 Yanvarya, Orenburg, 460000 Russia, e-mail (✉ corresponding author),;;;,
2Orenburg State University, 13, prosp. Pobedy, Orenburg, 460018 Russia;
3Orenburg State Agrarian University, 18, ul.Chelyuskintsev, Orenburg, 460014 Russia

Sizova ..
Levakhin Yu.I.
Miroshnikov S..
Babicheva I..
Lebedev S.V.
Kosilov V.I.

Received December 18, 2017


Animals of modern breeds and crosses need more dietary minerals to realize more of their genetic potential but that leads to an increase in the ecological load. So the development of new sources of essential chemical elements with relatively less toxicity and higher bioavailability of the components are of relevance. Ultra-dispersed particles (UDP) are among prospective preparations. This is the first report on a comparative study of the effects of dietary Cu and Zn additives as UDP of the alloy, asparaginates and sulfates on performance and productivity of Smena 7 broiler chicks. The study showed greater availability, a more pronounced positive effect of Cu/Zn-UDP and the various impact of the forms studied on mineral metabolism. Dietary Cu/Zn-UDP accelerated bird growth by 3.9 % (P ≤ 0.05) compared to Cu and Zn mineral salts and by 4.7 % (P ≤ 0.01) compared to Cu and Zn asparaginates. Administration of Cu/Zn-UDP led to an increase in blood NO metabolites by 9.8 % (P ≤ 0.05), 21.0 % (P ≤ 0.01), 13.0 % ( ≤ 0.05), and 11.0 % ( ≤ 0.05) compared to the control on days 7, 14, 21 and 28, respectively. By the end of the study, blood erythrocytes and hemoglobin was 6.27 % higher (P ≤ 0.05) and 19.40 % higher (P ≤ 0.001) compared to the control and also 5.21 % higher and 12.60 % higher when compared to Cu and Zn asparaginates used. Replacement of copper mineral salt with dietary Cu/Zn-UDP and Cu asparaginate was accompanied by an increase in this element pool in the body of 42-day old broiler chickens by 51.6 % (P ≤ 0.01) and 13.2 %, respectively. By the end of the study, the zinc pool, on the contrary, decreased by 22.9 % compared to the control when Zn asparaginate was fed but exceeded the control by 12.5 % (P ≤ 0.05) when using Cu/Zn-UDP. Copper and zinc preparations used in various ways influenced on the exchange of a number of chemical elements in the body. Feeding with Cu/Zn-UDP and Cu and Zn asparaginates resulted in lower pools of Ni, Al, Sn and a significant increase in iodine and cobalt pools compared to control. A distinctive feature of Cu/Zn-UDP action from that of the asparaginates was an increase in Pb and Cd pools which could result from a change of the load on transport systems in the intestine when using Cu/Zn-UDP.

Keywords: ultra-dispersed particles of Cu and Zn alloy, Cu and Zn asparaginates, broiler chicks, productivity, chemical element composition, biochemical and morphological blood parameters.

Full article (Rus)



  1. Roco M.M. The long view of nanotechnology development: the national nanotechnology initiative at 10 years. In: Nanotechnology research directions for societal needs in 2020. Science Policy Reports, V. 1. Springer, Dordrecht, 2011:1-28 CrossRef
  2. Hooley G., Piercy N.F., Nicoulaud B. Marketing strategy and competitive positioning. London, 2012.
  3. Makarov D.V. Vestnik KRAUNTS. Fiziko-matematicheskie nauki, 2014, 1(8): 97-102 (in Russ.).
  4. Wang L., Hu C., Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomed., 2017, 12: 1227-1249 CrossRef
  5. Wahajuddin, Arora S. Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int. J. Nanomed., 2012, 7: 3445-3471 CrossRef
  6. Chatterjee D.K., Diagaradjane P., Krishnan S. Nanoparticle-mediated hyperthermia in cancer therapy. Ther. Deliv., 2011, 2(8): 1001-1014.
  7. Prasad R., Bhattacharyya A., Nguyen Q.D. Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front. Microbiol., 2017, 8: 1014 CrossRef
  8. Mishra S., Keswani C., Abhilash P.C., Fraceto L.F. and Singh H.B. Integrated approach of agri-nanotechnology: challenges and future trends. Front. Plant Sci., 2017, 8: 471 (doi:  10.3389/fpls.2017.00471).
  9. Sekhon B.S. Nanotechnology in agri-food production: an overview. Nanotechnology, Science and Applications, 2014, 7: 31-53 CrossRef
  10. Bumbudsanpharoke N., Ko S. Nano-food packaging: an overview of market, migration research, and safety regulations. J. Food Sci., 2015, 80: 910-923 CrossRef
  11. Sabourin V., Ayande A. Commercial opportunities and market demand for nanotechnologies in agribusiness sector. Journal of Technology Management & Innovation,2015, 10: 40-51 CrossRef
  12. Zhang J., Spallholz J. Toxicity of selenium compounds and nano-selenium particles. In: Handbook of systems toxicology. D. Casciano, S.C. Sahu (eds.). John Wiley and Sons, West Sussex, UK, 2011: 787-801.
  13. Zhang J. Biological properties of red elemental selenium at nano size (Nano-Se) in vitro and in vivo. In: Nanotoxicity: from in vivo and in vitro model to health risks. S.C. Sahu, D. Casciano (eds.). John Wiley and Sons, West Sussex, UK, 2009: 97-114.
  14. Glushchenko N.N., Bogoslovskaya O.A., Baitukalov T.A., Ol'khovskaya I.P. Mikroelementy v meditsine, 2008, 9(1-2): 52 (in Russ.).
  15. Mishra B., Patel B.B., Tiwari S. Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine, 2010, 6: 9-24 CrossRef
  16. Tang H.Q., Xu M., Rong Q., Jin R.W., Liu Q.J., Li Y.L. The effect of ZnO nanoparticles on liver function in rats. International Journal of Nanomedicine, 2016, 31(11): 4275-4285 CrossRef
  17. Kowalczyk M., Banach M., Rysz J.  Ferumoxytol: a new era of iron deficiency anemia treatment for patients with chronic kidney disease. J. Nephrol., 2011, 24(6): 717-722 CrossRef
  18. Weinstein J.S., Varallyay C.G., Dosa E., Gahramanov S., Hamilton B., Rooney W.D., Muldoon L.L., Neuwelt E.A. Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review. J. Cereb. Blood Flow Metab., 2010, 30: 15-35 CrossRef
  19. Zhou X., Wang Y. Influence of dietary nano elemental selenium on growth performance, tissue selenium distribution, meat quality, and glutathione peroxidase activity in Guangxi Yellow chicken. Poultry Sci., 2011, 90(3): 680-686 CrossRef
  20. Nikonov I.N., Laptev G.Y., Folmanis Y.G., Folmanis G.E., Kovalenko L.V., Egorov I.A., Fisinin V.I., Tananaev I.G. Iron nanoparticles as a food additive for poultry. Dokl. Biol. Sci., 2011, 1: 328-331 CrossRef
  21. Zha L.Y., Zeng J.W., Chu X.W., Mao L.M., Luo H.J. Efficacy of trivalent chromium on growth performance, carcass characteristics and tissue chromium in heat-stressed broiler chicks. J. Sci. Food Agric., 2009, 89: 1782-1786 CrossRef
  22. Yong Z., Lan L., Peng-Fei Z., Xin-Qi L., Wei-Dong Z., Zhao-Peng D.,  Shi-Wen W., Wei S., Ling-Jiang M., Zhi-Hui H. Regulation of egg quality and lipids metabolism by zinc oxide nanoparticles. Poultry Sci., 2016, 95(4): 920-933 CrossRef
  23. Ognik K., Stepniowska A., Cholewinska E., Kozlowski K. The effect of administration of copper nanoparticles to chickens in drinking water on estimated intestinal absorption of iron, zinc, and calcium. Poultry Sci., 2016, 95(9): 2045-2051 CrossRef
  24. Miroshnikova E., Arinzhanov A., Kilyakova Y., Sizova E., Miroshnikov S. Antagonist metal alloy nanoparticles of iron and cobalt: impact on trace element metabolism in carp and chicken. HVM Bioflux, 2015, 7(4): 253-259.
  25. Goyer R.A. Toxic and essential metal interactions. Annu. Rev. Nutr., 1997, 17: 37-50 CrossRef
  26. Kelleher S.L., Lönnerdal B. Zinc supplementation reduces iron absorption through age-dependent changes in small intestine iron transporter expression in suckling rat pups. J. Nutr., 2006, 136(5): 1185-1191.
  27. Hossain M.B., Kelleher S.L., Lönnerdal B. Maternal iron and zinc supplementation during pregnancy affects body weight and iron status in rat pups at weaning. J. Nutr., 2011, 141(5): 798-804 CrossRef
  28. Oberleas D., Harland B.F. Treatment of zinc deficiency without zinc fortification. Journal of Zhejiang University SCIENCE B, 2008, 9(3): 192-126. CrossRef
  29. Xin W., Xugang S., Xie C., Li J., Hu J., Yin Y.L., Deng Z.Y. The acute and chronic effects of monosodium L-glutamate on serum iron and total iron-binding capacity in the jugular artery and vein of pigs. Biol. Trace Elem. Res., 2013, 153(1-3): 191-195 CrossRef
  30. Hurrell R., Egli I. Iron bioavailability and dietary reference values. Am. J. Clin. Nutr., 2010, 91(5): 1461S-1467S CrossRef
  31. Kudrin A.V., Skal'nyi A.V., Zhavoronkov A.A., Skal'naya M.G., Gromova O.A. Immunofarmakologiya mikroelementov [Immunopharmacology of microelements]. Moscow, 2000 (in Russ.).
  32. Huang R.L., Yin Y.L., Wu G.Y., Zhang Y.G., Li T.J., Li L.L., Li M.X., Tang Z.R., Zhang J., Wang B., He J.H., Nie X.Z. Effect of dietary oligochitosan supplementation on ileal digestibility of nutrients and performance in broilers. Poultry Sci., 2005, 84(9): 1383-1388.
  33. Fisinin V.I., Egorov I.A., Lenkova T.N., Okolelova T.M., Ignatova G.V., Shevyakov A.N., Panin I.G., Grechishnikov V.V., Vetrov P.A., Afanas'ev V.A., Ponomarenko Yu.A. Metodicheskie ukazaniya po optimizatsii retseptov kombikormov dlya sel'skokhozyaistvennoi ptitsy [Guidelines for the optimization of animal feed recipes for poultry]. Moscow, 2009 (in Russ.).
  34. Nikonov I.N., Folmanis Yu.G., Folmanis G.E., Kovalenko L.V., Laptev G.Yu., Egorov I.A., Fisinin V.I., Tananaev I.G. Doklady Akademii nauk, 2011, 440(4): 565-569 (in Russ.).
  35. Il'ichev E., Nazarova A., Polishchuk S., Inozemtsev V. Molochnoe i myasnoe skotovodstvo, 2011, 5: 27-29 (in Russ.).
  36. Yausheva E., Miroshnikov S., Sizova E., Miroshnikova E., Levahin V. Comparative assessment of effect of cooper nano and microparticles in chicken. Oriental Journal of Chemistry, 2015, 31(4): 2327-2336 CrossRef
  37. Vishnyakov A.I., Ushakov A.S., Lebedev S.V. Vestnik myasnogo skotovodstva, 2011, 2(54): 96-102 (in Russ.).
  38. Ghahnavieh M.Z., Ajdary M., Naghsh N. Effects of intraperitoneal injection of gold nanoparticles in male mice. Nanomed. J., 2014, 1(3): 121-127.
  39. Shatskikh E.V. Agrarnyi vestnik Urala, 2008, 11(53): 83-84 (in Russ.).
  40. Skorkina M.Yu., Fedorova M.Z., Sladkova E.A., Derkachev R.V., Zabinyakov N.A. Yaroslavskii pedagogicheskii universitet, 2010, 2: 101-106 (in Russ.). 
  41. Yausheva E.V., Miroshnikov S.A., Kvan O.V. Vestnik Orlovskogo gosudarstvennogo universiteta, 2013, 12(161): 203-207 (in Russ.).
  42. Borisevich V.B., Kaplunenko V.G. Nanomaterialy i nanotekhnologii v veterinarnoi praktike [Nanomaterials and nanotechnologies in veterinary practice]. Kiev, 2012: 512 (in Russ.).
  43. Hind T., Honnerdal B., Stenlund H., Gamayanti I., Ismail D., Seswandhana R., Persson L.A. A community based randomized controlled trial of iron and zinc supplementation in Indonesian infants: effects on growth and development. Am. J. Clin. Nutr., 2004, 80: 729-736 CrossRef
  44. Watts D.L. The nutritional relationships of Iron. J. Orthomol. Med., 1988, 3(3): 110-116.
  45. Ranganathan P.N., Lu Y., Jiang L., Kim C., Collins J.F. Serum ceruloplasmin protein expression and activity increases in iron-deficient rats and is further enhanced by higher dietary copper intake. Blood, 2011, 118(11): 3146-3153.
  46. Bárány E., Bergdahl I.A., Bratteby L.-E., Lundh T., Samuelson G., Skerfving S., Oskarsson A. Iron status influences trace element levels in human blood and serum. Environ. Res., 2005, 98(2): 215-223.