doi: 10.15389/agrobiology.2018.2.270eng

UDC 636.2/.3: 581.55


Supported financially by grant from Russian Foundation for Basic Research, projects № 15-05-08025, 17-04-01035



Z.Sh. Shamsutdinov, V.M. Kosolapov, E.Z. Shamsutdinova, M.V. Blagorazumova, N.Z. Shamsutdinov

Williams Federal Science Center for Fodder Production and Agroecology, Federal Agency of Scientific Organizations, korp. 1, ul. Nauchnii Gorodok, Lobnya, Moscow Province, 141055 Russia, e-mail (corresponding author),,, (✉ corresponding author)

Shamsutdinov Z.Sh.
Kosolapov V.M.
Shamsutdinova E.Z.
Blagorazumova M.V.
Shamsutdinov N.Z.

Received May 13, 2016


The concept of ecological niche occupies the central position in modern ecology (Eu. Odum, 1975). The concept of ecological niche may to a certain extent explain how different species can normally function and produce, growing side by side with each other, and absorbing water and mineral resources within a certain ecotope. In the context of the traditional concept of ecological niche, the community can be imagined as extensive n-dimensional hyper space within which each specific population evolves in such direction to correspond to own part of this space (G. Huthinson, 1957). The niche is characterized by its position and the response to the factors within the hyperspace of this community. In recent years, along with the traditional concept of niche, there was a concept of neutralizm which is actively developed by Stephen Hubbel and his supporters (G. Bell, 2001; J. Whitfield, 2002). According to this concept, species coexist thanks to similarity, but not distinctions, as a result of similarity on demographic characteristics, i.e. the similar specific speed of population growth and speed of settling of the released site. A number of authors have tried to unite within one model the neutralistic and niche mechanisms of functioning of species in community (D. Gravel et al., 2006). Now even more often ecologists speak about two types of communities (А.М. Gilyarov, 2010). Communities of the first type are organized according to the principle of a discrepancy of types on different ecological niches. Their existence is possible only because their niches are differing. Communities of the second type are organized and capable to coexist very long if are ecologically identical due to the same probability of an individual of different species to reproduce, die out, and occupy free spaces. It is supposed that if species long live in the same place, then they already are definitely rather close ecologically. We created multispecific, multi-tiered agroecosystems consisting of shrubs, semishrubs and grasses for arid conditions of Central Asia based on the traditional concept of a divergence of species in different ecological niches. For formation floristic and cenotic full-member multispecific pasture agroecosystems, we used fodder shrubs, typical for the southern deserts (Haloxylon aphyllum, Aellenia subaphylla), semi-shrubs (Eurotia ceratoides), draft semishrubs (Kochia prostrata, Salsola orientalis, Camphorosma lessingii, Artemisia diffusa), xerofitic perennial grasses (Poa bulbosa, Carex pachystylis) as the members of typical zonal flora. Multispecific shrubs-semishrubs-grassy pasture agrophytocenosis which were formed using zonal dominant species of fodder plants provided for a rapid restoration of biodiversity and the fodder efficiency lost under land degradation. The spring-summer and autumn-winter pasture agroecosystems created from mix of fodder shrubs, semishrubs, draft semishrubs and perennial grasses with different rhythmic of development, different type of root system, different drought resistance and heat resistance are more durable and productive than natural pasture ecosystems of the Central Asian deserts. Along with ecological advantages, multispecific pasture agroecosystems are much more various on structures of forages, they are better eaten and more stoutly satisfy physiological needs of animals for nutrients.

Keywords: natural pastures, constructed pastures, pasture agrophytocenosis, ecological niche.


Full article (Rus)

Full article (Eng)



  1. Odum Yu. Ekologiya [Ecology]. Moscow, 1986 (in Russ.).
  2. Pianka E. Evolyutsionnaya ekologiya [Evolutionary ecology]. Moscow, 1981 (in Russ.).
  3. Gilyarov A.M. Uspekhi sovremennoi biologii, 1978, 85(3): 431-446 (in Russ.).
  4. Elton CH. Ekologiya nashestviya zhivotnykh i rastenii [Ecology of animal and plant invasion]. Moscow, 1960 (in Russ.).
  5. Gauze G.F. Zoologicheskii zhurnal, 1935, 14(2): 243-270 (in Russ).
  6. Hutchinson G.E. Soncludingn remarks. Cold Spring Harbor Symposia on Quantitative Biology, 1957, 22: 415-427.
  7. Soldbrig О., Soldbrig D. Populyatsionnaya biologiya i evolyutsiya [Population biology and evolution]. Moscow, 1982 (in Russ).
  8. McGill B.J. A renaissance in the study of abundance. Science, 2006, 314: 770-772 CrossRef
  9. McGill B.J., Etienne R.S., Gray J.S., Alonso D., Anderson M.J., Benecha H.K., Dornelas M., Enquist B.J., Green J.L., He F., Hurlbert A.H., Magurran A.E., Marquet P.A., Maurer B.A., Ostling A., Soykan C.U., Ugland K.I., White E.P. Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecol. Lett., 2007, 10: 995-1015 CrossRef
  10. Hubbell S.P. The unified neutral theory of biodiversity and biogeography. Princeton and Oxford, Princeton University Press, 2001.
  11. Hubbell S.P. Neutral theory in community ecology and the hypothesis of functional equivalence. Funct. Ecol., 2005, 19: 166-172 CrossRef
  12. Hubbell S.P., Foster R.B. Biology, chance, and history and the structure of tropical rain forest tree communities.In: Community ecology. J.M. Diamond, T.J Case (eds.). Harper and Row, NY, 1986: 314-329.
  13. Bell G. Neutral macroecology. Science, 2001, 293: 2413-2418 CrossRef
  14. Whitfield J. Ecology: neutrality versus the niche. Nature, 2002, 417: 480-481 CrossRef
  15. Ricklefs R.E. Naturalists, natural history, and the nature of biological diversity. The American Naturalist, 2012, 179(4): 423-435 CrossRef
  16. Shipley B., Paine C.E.T., Baroloto C. Quantifying the importance of local niche-based and stochastic processes to tropical tree community assembly. Ecology, 2012, 93(4): 760-769 CrossRef
  17. Hille Ris Lambers J.H., Clark J.S., Beckage B. Density-dependent mortality and the latitudinal gradient in species diversity. Nature, 2002, 417, 6890: 732-735 CrossRef
  18. ter Steege H., Zagt R. Density and diversity. Nature, 2002, 417, 6890: 698-699 CrossRef
  19. Volkov I., Banavar J.R., Hubbell S.P., Maritan A. Neutral theory and relative species abundance in ecology. Nature, 2003, 424: 1035-1037 CrossRef
  20. Adler P.B. Neutral models fail to reproduce observed species-area and species-time relationships in Kansas grasslands. Ecology, 2004, 85: 1265-1272 CrossRef
  21. Harpole W.S., Tilman D. Non-neutral patterns of species abundance in grassland communities. Ecol. Lett., 2006, 9: 15-23 CrossRef
  22. Clark J.S. Beyond neutral science. Trends Ecol. Evol., 2009, 24: 8-15 CrossRef
  23. Gravel D., Canham D., Beaudet M., Messier C. Reconciling niche and neutrality: the continuum hypothesis. Ecol. Lett., 2006, 9: 399-409 CrossRef
  24. Adler P.B., Hille Ris Lambers J., Levine J.M. A niche for neutrality. Ecol. Lett., 2007, 10: 95-104 CrossRef
  25. Chesson P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst., 2000, 31: 343-366 CrossRef
  26. Pavlov D.S., Striganova B.R., Bukvareva E.N., Dgebuadze Yu.Yu. Vestnik RAN, 2010, 80(2): 131-140 (in Russ).
  27. Bukvareva E.N., Aleshchenko G.M. Uspekhi sovremennoi biologii, 2012, 132(4): 337-353 (in Russ).
  28. Komarov A.S., Zubkova E.V. Matematicheskaya biologiya i bioinformatika, 2012, 7(1): 152-161 (in Russ).
  29. Zubkova E.V. Dinamika raspredelenii ekologicheskikh nish rastenii pri suktsessiyakh lesnykh soobshchestv. Avtorefat kandidatskoi. dissertatsii [Dynamics of ecological niche distribution under succession in forest plant communities. PhD Thesis]. Kazan', 2013 (in Russ.).
  30. Seledets V.P. Botanicheskii zhurnal, 2013, 98(1): 25-40 (in Russ.).
  31. Shamsutdinov Z.Sh., Ubaidullaev Sh.R., Blagorazumova M.V., Shamsutdinova E.Z., Na-siev B.N. Aridnye ekosistemy, 2013, 19(4/57): 5-13 (in Russ.).
  32. Dorokhina L.N., Geguchadze E.S. Uspekhi sovremennogo estestvoznaniya, 2006, 4: 36-37 (in Russ.).
  33. Shamsutdinov Z.Sh., Shamsutdinova E.Z. L.G. Ramenskii theory about types of vital strategies and its importance for development of arid forage resources. Agricultural Biology, 2011, 2: 32-40.
  34. Mack R.N. Biotic invasions: causes, epidemiology, global consequences and control. Ecol. Appl., 2000, 10: 689-710 CrossRef
  35. Jakobs G., Weber E., Edwards P.J. Introduced plants of the invasive Solidago gigantea (Asteraceae) are larger and grow denser than conspecifics in the native range. Diversity and Distributions, 2004, 10: 11-19 CrossRef
  36. Callaway P.M., Aschchoug E.T. Invasive plant versus their new and old neighbors: a mechanism for exotic invasion. Science, 2000, 290: 521-523 CrossRef
  37. Chumanova N.N., Grebennikova V.V., Kondaurova I.G. Vestnik Kemerovskogo gosudarstvennogo universiteta, 2015, 3(4/64): 116-120 (in Russ.).
  38. Puzachenko Yu.G., Zheltukhin A.S., Sandlerskii R.B. Zhurnal obshchei biologii, 2010, 71(6): 467-487 (in Russ.).
  39. Korablev M.P., Korablev N.P., Korablev P.N., Tumanov I.L. Vestnik okhotovedeniya, 2014, 11(2): 110-115 (in Russ.).
  40. Gilyarov A.I. Zhurnal obshchei biologii, 2010, 71(5): 386-401 (in Russ.).
  41. Shamsutdinov Z.Sh., Shamsutdinov N.Z. Aridnye ekosistemy, 2012, 18(3/52): 5-21 (in Russ.).
  42. Ramenskii A.G. Vvedenie v kompleksnoe pochvenno-geobotanicheskoe obsledovanie zemel' [Introduction to the complex soil-geobotanical survey of lands]. Moscow, 1938 (in Russ.).
  43. Kurkin K.A. Byul. MOIP. Otd. biol., 1983, 8(4): 3-14 (in Russ.).
  44. Nechaeva N.T., Shamsutdinov Z.Sh. V sbornike: Problemy antropogennoi dinamiki biogeotsenozov (Chteniya pamyati akademika V.N. Sukacheva) [In: Anthropogenic dynamics of biocoenoses — V.N. Sukachev Memorial Readings]. Moscow, 1990: 31-53 (in Russ.).
  45. Zaletaev V.S. Zhizn' v pustyne. Geografo-botanicheskie i ekologicheskie problem [Life in the desert. Geographical and botanical and ecological aspects]. Moscow, 1976 (in Russ.).
  46. Shamsutdinov Z.Sh., Shamsutdinov N.Z. Biogeocenotic principles and methods of degraded pastures phytomelioration in Central Asia and Russia. In: Prospects for saline agriculture. Netherlands, 2002: 29-35.
  47. Shamsutdinov Z.Sh., Shamsutdinov N.Z. Halophytes utilization for biodiversity and productivity of degraded pastures restoration in arid region of Central Asia and Russia. In: Biosaline agriculture and high salinity tolerance. C. Abdelly, M. Öztürk, M. Ashraf, C. Grignon (eds.). Switzerland, Birkhauser Verlag, 2008: 293-240 CrossRef
  48. Rodin L.E. Produktivnost' pustynnykh soobshchestv. V knige: Resursy biosfery [In: Biosphere resources. Iss. 1]. Leningrad, 1975, vypusk 1: 128-166 (in Russ.).
  49. Rabotnov T.A. Fitotsenologiya [Phytocenology]. Moscow, 1983 (in Russ.).