doi: 10.15389/agrobiology.2018.2.258eng

UDC 636.085.52:579.64

 

BIOLOGY OF ALFALFA SILAGE MAKING (review)

Yu.A. Pobednov, V.M. Kosolapov

Williams Federal Science Center for Fodder Production and Agroecology, Federal Agency of Scientific Organizations, korp. 3, Nauchnyi gorodok, Lobnya, Moscow Province, 141055 Russia, e-mail vnii.kormov@yandex.ru (✉ corresponding author V.M. Kosolapov)

ORCID:
Pobednov Yu.A. orcid.org/0000-0001-8701-009x
Kosolapov V.M. orcid.org/0000-0001-6311-023x

Received March 27, 2017

 

Alfalfa dry matter is characterized by the less content of sugar, celluloses and hemicelluloses and more quantity of pectin in comparison to grasses (P. Mc-Donald et al., 1970). The high level of pectin provides increased rate of feed fermentation in a rumen (E.F. Annison, et al., 1962). This leads to improved assimilation of alfalfa silage dry matter by cattle, despite the low energy level unlike to cereal grasses silage (. Grabov, 2016). As a result, the nutrients intake and productivity of cows increase. However, there are some particularities in qualitative alfalfa silage- and haylage-making, such as absence of abundant Enterobacteriaceae bacteria on the alfalfa plants (R.A. Shurchno et al., 2008), unlike cereal grasses (Yu.A. Pobednov et al., 2015). Thereof the basic kind of alfalfa silage and haylage spoilage is butyric (putrid) fermentation. With due regard to this fact, the main principle of alfalfa conservation is based on the known rule of G.W. Wieringa (1963), which tells about increasing of clostridium bacteria sensitivity to active acidity (pH) of feed when dry matter content in plants rises. This allows providing feed preservation under significantly higher parameter of pH, than at ensiling the freshly-cut mass (F. Weissbach, 2012). However, fodder must reach fast acidification with determined pH value to eliminate a butyric fermentation at each dry matter content. But this condition especially difficult for performance at alfalfa ensiling, because plants contain much weakly-bound water even at 35 % dry matter content, in contrast to cereal grasses and red clover. At weak acidification, it can lead to intensive proteolysis (X.S. Guo et al., 2012) with ammonia accumulation and an increase in buffer capacity of feed. As a result, pH of alfalfa silage does not decline to necessary level for elimination the clostridium bacteria growth during the long period and it causes to accumulation a butyric acid and the products of putrid decay of the proteins. It is possible to reduce the intensity of proteolysis by increased feed acidification with addition of liquid organic acids or inoculants of lactic acid bacteria combined with sugar. Another way is ensiling of alfalfa wilted to ≥ 40 % dry matter content followed by application of the lactic acid bacteria-based inoculants. At this level of dehydration, the content of sugar in dry matter increases 1.6 times (Yu.A. Pobednov et al., 2016), and addition of the bacterial inoculants leads to increasing a degree of feed acidification as well as storage and feed-out stability (F. Weissbach, 2012). Application of enzymes in ensiling alfalfa wilted to ≥ 40 % dry matter is one more advanced method of this forage crop conservation (.. Anisimov, 2006). Another effective approach of alfalfa silage-making is using enzyme additives combined with lactic acid bacteria (. Grabov, 2016).

Keywords: alfalfa, proteolysis, dry matter content, acidification, lactic acid bacteria-based inoculants, enzymes, silage quality.

 

Full article (Rus)

Full article (Eng)

 

REFERENCES

  1. Laptev G.Yu., Novikova N.I., Il'ina L.A., Yyldyrym E.A., Soldatova V.V., Nikonov I.N., Filippova V.A., Brazhnik E.A., Sokolova O.N. Dynamics of mycotoxin accumulation in silage during storage. Agricultural Biology, 2014, 6: 123-130 CrossRef
  2. Chub O. Zhivotnovodstvo Rossii, 2015, 10: 55-56 (in Russ.). 
  3. Mak-Donal'd P., Edvards R., Grinkhaldzh Dzh. Pitanie zhivotnykh [Animal feeding]. Moscow, 1970 (in Russ.).  
  4. Ennison E.F., L'yuis D. Obmen veshchestv v rubtse [Rumen metabolism]. Moscow, 1962 (in Russ.).   
  5. Grabov M. Tsenovik, 2016, 5: 43 (in Russ.).   
  6. Albrecht K.A., Beauchemin K.A. Alfalfa and other perennial legume. In: Silage science and technology, Agronomy Monograph 42. D.R. Buxton, R.E. Muck, J.H. Harrison (eds.). ASA, CSSA, and SSSA, Madison, 2003: 633-664 CrossRef
  7. Vaisbakh F. Problemy biologii produktivnykh zhivotnykh, 2012, 2: 49-70 (in Russ.).   
  8. Sosnowski J., Jankowski K., Wisniewska-Kadzajan B., Jankowska J., Kolczarek R. Effect of the extract from Ecklonia maxima on selected micro- and macroelements in aerial biomass of hybrid alfalfa. J. Elementol., 2014, 19(1): 209-217 CrossRef
  9. Hancock D.W., Buntin G.D., Ely L.O., Lacy R.C., Heusner G.L., Stewart R.L. Alfalfa management in Georgia. Athens, 2005.  
  10. Pobednov Yu.A., Kosolapov V.M., Bondarev V.A., Akhlamov Yu.D., Mamaev A.A., Klimenko V.P., Otroshko S.A., Shevtsov A.V. Silosovanie i senazhirovanie kormov (rekomendatsii) [Silage and hay making]. Moscow, 2012 (in Russ.).  
  11. Pobednov Yu.A., Mamaev A.A., Ivanova M.S. V sbornike nauchnukh trudov: Zhuchenkovskie chteniya II [II Zhuchenko Readings. Iss. 11(59)]. Moscow, 2016. Vypusk 11(59): 180-188 (in Russ.).   
  12. Anisimov A.A. Vash sel'skii konsul'tant, 2006, 4: 28-30 (in Russ.).  
  13. Vasin V.G., Zotikov V.I., Vasina A.A. Proizvodstvo kormov dlya molochnykh kompleksov [Feed production for dairy commercial farms]. Orel, 2012 (in Russ.).  
  14. Weissbach F., Honig H. Über die Vorhersage und Steurung des Gärungsverlaufs bei der Silierung von Grunfutter aus extensiven Anbau. Landbauforschung Völkenrode, 1996, 1: 10-17.
  15. Pobednov Yu.A. Teoreticheskie predstavleniya i sposoby konservirovaniya kukuruzy i trav na osnove regulirovaniya mikrobiologicheskikh protsessov [Theoretical aspects and methods for preserving maize and herbs based on the regulation of microbiological processes]. St. Petersburg, 2017 (in Russ.).  
  16. Bondarev V.A., Kosolapov V.M., Klimenko V.P., Krichevskii A.N. Prigotovlenie silosa i senazha s primeneniem otechestvennykh biologicheskikh preparatov [Domestic biologicals in silage and hay making].Moscow, 2016 (in Russ.).  
  17. Fehrmann E., M?ller Th. Jaresverlauf des epiphytischen Mikrobenbesatzes auf einen Graslandstandort. Das Wirtschaftseigene Futter, 1990, 36(1): 66-78.
  18. Shmidt V., Vetterau G. Proizvodstvo silosa [Silage making]. Moscow, 1975 (in Russ.).   
  19. Shurkhno R.A., Norina O.S., Tagirov M.Sh., Naumova R.P. Doklady Rossiiskoi akademii sel'skokhozyaistvennykh nauk, 2008, 6: 23-26 (in Russ.).  
  20. Viringa Dzh. Materialy 8-go Mezhdunarodnogo lugopastbishchnogo kongressa (11-21 iyulya, 1960 g., g. Reding, Angliya) (perevod s angliiskogo) [Proc. 8th Int. Grassland Congress, 11-21 July, 1960, Reading. England]. Moscow, 1963: 334-343 (in Russ.).  
  21. Pahlow G., Weissbach F. New aspects of evaluation and application of silage additives. Landbauforschung Völkenrode, 1999, 206: 141-158.
  22. Pobednov Yu.A. Problemy biologii produktivnykh zhivotnykh, 2009, 3: 89-100 (in Russ.).  
  23. Proizvodstvo grubykh kormov. Kniga 1 /Pod redaktsiei D. Shpaara [Coarse fodder production. Book 1. D. Shpaar (ed.)]. Torzhok, 2002 (in Russ.).
  24. Pobednov Yu.A. Adaptivnoe kormoproizvodstvo, 2016, 2: 21-37 (in Russ.).   
  25. Charmley E., Veira D.M. Inhibition of proteolysis at harvest using heat in alfalfa silages: effect on silage composition and digestion by sheep. J. Anim. Sci., 1990, 68(3): 758-766 CrossRef
  26. McKersie B., Buchanan-Smith J. Changes in the levels of proteolytic enzymes in ensiled alfalfa forage. Canadian Journal of Plant Science, 1982, 62(1): 111-116 CrossRef
  27. Purwin C., Pysera B., Fijalkowska M., Antoszkiewicz Z., Piwczynski D., Wyzlic I., Lipinski K. The influence of ensiling method on the composition of nitrogen fractions in red clover, alfalfa and red fescue silage. Proc. XVI International Silage Conference. Hämeenlinna, 2012: 256-257.
  28. Ulit'ko V.E., Pykhtina L.A., Desyatov O.A. Povyshenie produktivnogo deistviya kormov pri proizvodstve moloka i myasa v Srednevolzhskom regione [Increasing feed effect on milk and meat production in the Middle Volga region]. Ul'yanovsk, 2016 (in Russ.).   
  29. Li S.S., Pshenichnikova E.N., Kroneval'd E.A. Vestnik Altaiskogo gosudarstvennogo agrarnogo universiteta, 2014, 2(112): 98-102 (in Russ.).   
  30. Makarov S.A. Mezhdunarodnyi nauchno-issledovatel'skii zhurnal, 2016, 3(45-3): 109-112 CrossRef (in Russ.).   
  31. Zubrilin A.A. Konservirovanie zelenykh kormov [Green forage preserving]. Moscow, 1938 (in Russ.).   
  32. Gorelikova G.A. Osnovy sovremennoi pishchevoi biotekhnologii [Fundamentals of modern food biotechnology]. Kemerovo, 2004 (in Russ.).    
  33. Pobednov Yu.A. Problemy biologii produktivnykh zhivotnykh, 2016, 2: 42-54 (in Russ.).    
  34. Driehuis F., Oude Elferink S.J.W.H., Van Wikselaar P.G. Fermentation characteristics and aerobic stability of grass silage inoculated with Lactobacillus buchneri, with or without homofermentative lactis acid bacteria. Grass Forage Sci., 2001, 56(4): 330-343 CrossRef 
  35. Weissbach F. Consequences of grassland de-intensification for ensilability and feeding value of herbage. Landbauforschung Völkenrode, 1999, 206(Sonderheft): 41-53.
  36. Sagiyan A.S. Enantiomerno chistye nebelkovye aminokisloty. Sposoby polucheniya [Enantiomeric pure non-protein amino acids — synthesis, isolation, purification technique]. Moscow, 2010 (in Russ.).     
  37. Luckner . Vtorichnyi metabolizm u mikroorganizmov, rastenii i zhivotnykh [Secondary metabolism in microorganisms, pants, and animals]. Moscow, 1979 (in Russ.).   
  38. Heldt H.-W. Biokhimiya rastenii [Plant biochemistry]. Moscow, 2014 (in Russ.).  
  39. Davies D.R., Fychan R., Jones R. Aerobic deterioration of silage: causes and controls. Proc. Alltech’s 23rd Annual Symposium «Nutritional Biotechnology in the Feed and Food Industries». Nottingham, 2007: 227-238.
  40. Guo KH.S., Cheng W., Tao L., Zhu Yu., Zhou H. Contribution of endo — and exopeptidases to formation of nonprotein nitrogen during ensiling of alfalfa. Proc. KHVI International Silage Conference. Hämeenlinna, 2012: 58-59.
  41. McKersie B.D. Effect of pH on proteolysis in ensiled legume forage. Agron. J., 1983, 77(1): 81-86 CrossRef
  42. Tao L., Guo X.S., Zhou H., Undersander D.J., Nandety A. Short communication: characteristics of proteolytic activities of endo- and exopeptidases in alfalfa herbage and their implications for proteolysis in silage. J. Dairy Sci., 2012, 95(8): 4591-4595 CrossRef 
  43. Filya I., Muck R.E., Contreras-Govea F.E. Inoculant effects on alfalfa silage: fermentation products and nutritive value. J. Dairy Sci., 2007, 90: 5108-5114 CrossRef
  44. Shifer K., SHtainkhefel' O., Nad' B. Novoe sel'skoe khozyaistvo, 2007, 4: 74-78 (in Russ.).   
  45. Hashemzadeh-Cigari F., Khorvash M., Chorbani G.R., Taghizadeh A. The effects of wilting, molasses and inoculants on the fermentation quality and nutritive value of lucerne silage. S. Afr. J. Anim. Sci., 2011, 41(4): 377-388 CrossRef
  46. Kosolapov V.M., Bondarev V.A., Panov A.A., Akhlamov Yu.D., Udalova E.V., Isaenkov N.I., Anisimov A.A., Otroshko S.A., Klimenko V.P. Tekhnologiya silosovaniya vysokobelkovykh mnogoletnikh bobovykh trav s polifermentnym preparatom Ferkon (rekomendatsii) [Silaging of high-protein perennial legumes using multi enzyme preparation Ferkon — recommendation]. Moscow, 2008 (in Russ.).   
  47. Smitt K.-O., Pratz H. Mit Luzerne die Futtergrudlage. Rheinische Bauer Zeitung, 1996, 5: 20.
  48. Kung L.J., Taylor C.C., Lynch M.P., Neylon J.M. The effect of treating alfalfa with Lactobacillus buchneri 40788 on silage fermentation, aerobic stability, and nutritive value for lactating dairy cows. J. Dairy Sc., 2003, 86: 336-343 CrossRef
  49. Ranjit N.K., Taylor C.C., Kung L. Effect of Lactobacillus buchneri 40788on the fermentation, aerobic stability, and nutritive value of maize silage. Grass Forage Sci., 2002, 57: 72-81 CrossRef
  50. Kristensen N.B., Sloth K.H., Højberg O., Spliid N.H., Jensen C., Thøgersen R. Effects of microbial inoculants on corn silage fermentation, microbial contents, aerobic stability, and milk production under field conditions. J. Dairy Sci., 2010, 93: 3764-3774 CrossRef
  51. Tabacco E., Righi F., Quarantelli A., Borreani G. Dry matter and nutritional losses during aerobic deterioration of corn and sorghum silages as influenced by different lactic acid bacteria inocula. J. Dairy Sci., 2011, 94: 1409-1419 CrossRef
  52. Shah A.A., Xianjun Y., Zhihao D., Siran W., Tao S. Effect of lactic acid bacteria on ensiling characteristics, chemical composition and aerobic stability of king grass. Journal of Animal & Plant Sciences, 2017, 27: 747-755.
  53. Randby A.T., Gismervik K., Andersen A., Skaar I.  Effect of invasive slug populations (Arion vulgaris) on grass silage: I. Fermentation quality, in-silo losses and aerobic stability. Anim. Feed Sci. Tech., 2015, 199: 10-19 CrossRef
  54. Marchenko F.Yu., Zabashta N.N., Golovko E.N. V sbornike nauchnykh trudov Severo-Kavkazskogo nauchno-issledovatel'skogo instituta zhivotnovodstva [In: Scientific papers of North-Caucasian Research Institute of Animal Husbandry]. Krasnodar, 2016: 182-188 (in Russ.).      
  55. Amerkhanov Kh.A., Tyapugin E.A., Simonov G.A., Tyapugin S.E. Effektivnost' vedeniya molochnogo skotovodstva v usloviyakh Evropeiskogo Severa Rossii [Effective dairy cattle farming in the European North of Russia]. Moscow, 2001 (in Russ.).    
  56. Kurnav O.M. Vplyv tekhnolog zagotvl snazhu na vtraty syrogo protenu ta iogo fraktsinyi sklad uprodovzh zbergannya. Kormi kormovirobnitstvo. Mzhvdomchii tematichnii naukovii zbrnik (Vnnitsya), 2010, 66: 274-280.
  57. Moran J.P., Owen T.R. The effect of bacterial inoculant on the fermentation of lucerne silage. Proc. KHI International Silage Conference. Aberystwyth, 1996: 166-167.
  58. Fijalkowska M., Pysera B., Lipinski K., Strusinska D. Changes of nitrogen compounds during ensiling of high protein herbages — a review. Ann. Anim. Sci., 2015, 15(2): 289-305 CrossRef 
  59. Ilyaletdinov N.K., Akhmediev A.N. Izvestiya AN SSSR. Seriya biologicheskaya, 1979, 3: 427-434 (in Russ.).    
  60. Rigó E., Zsédely E., Tóth T., Schmidt J. Ensiling alfalfa with hydrolyzed corn meal additive and bacterial inoculant. Acta Agronomica Óvariensis, 2011, 53(2): 15-23.  
  61. Lynch J.P., Jin L., Lara E.C., Baah J., Beauchemin K.A. The effect of exogenous fibrolytic enzymes and a ferulic acid esterase producing inoculant on the fibre degradability, chemical composition and conservation characteristics of alfalfa silage. Anim. Feed Sci. Tech., 2014, 193: 21-31 CrossRef
  62. Tabacco E., Borreani G., Crovetto G.M., Galassi G., Colombo D., Cavallarin L. Effect of chestnut tannin on fermentation quality, proteolysis, and protein rumen degradability of alfalfa silage. J. Dairy Sci., 2006, 89(12): 4736-4746 CrossRef    
  63. Kurtoglu V., Coskum B. Effect of bacterial adding alfalfa silage on milk yield and milk composition of dairy cattle. Revue Med. Vet., 2003, 154(12): 755-762.  
  64. Mohammed R., Stevenson D.M., Beauchemin K.A., Muck R.E., Weimer P.J. Changes in ruminal bacterial community composition following feeding of alfalfa ensiled with a lactic acid bacterial inoculant. J. Dairy Sci., 2012, 95(1): 328-339 CrossRef
  65. Silva V.P., Pereira O.G., Leandro E.S., Da Silva T.S., Ribeiro K.G., Mantovani H.C., Santos S.A. Effects of lactic acid bacteria with bacteriocinogenic potential on the fermentation profile and chemical composition of alfalfa silage in tropical conditions. J. Dairy Sci., 2016, 99(3): 1895-1902 CrossRef    
  66. Tao L., Zhou H., Zhang N., Si B., Tu Ya., Ma T., Diao Q. Effects of different source additives and wilt conditions on the pH value, aerobic stability, and carbohydrate and protein fractions of alfalfa silage. Anim. Sci. J., 2017, 88(1): 99-106 CrossRef 
  67. Lück E. Chemische Lebensmittelkonservirung. Berlin, Heidelberg, NY, Tokyo, 1985. 
  68. Chukanov N.K., Popenko A.K. Mikrobiologiya konservirovaniya trudnosilosuemykh rastenii Microbiology of preservation of plants which are hard to be silage]. Alma-Ata, 1986 (in Russ.).    
  69. McDonald P. Biokhimiya silosa [Silage biochemistry]. Moscow, 1985 (in Russ.).   

 

back