doi: 10.15389/agrobiology.2018.2.355eng

UDC 636.294:579.62:579.8

Supported by a grant from the Russian Science Foundation, the project No. 17-76-20026 for biotechnologies based on fundamental studies of rumen microbiocenosis of the Rangifer tarandus from the Russian Arctic.



L.A. Ilina1, K.A. Laishev2, E.A. Yildirim1, V.A. Filippova1,
T.P. Dunyashev1, A.V. Dubrowin1, I.N. Nikonov1, N.I. Novikova1,
G.Yu. Laptev1, A.A. Yuzhakov2, Т.М. Romanenko3, Yu.P. Vylko3

1JSC «Biotrof+», 19 korp. 1, Zagrebskii bulv., St. Petersburg, 192284 Russia, e-mail (✉ corresponding author);
2Northwest Center for Interdisciplinary Research of Food Scurity Problems, Federal Agency of Scientific Organizations, 7, sh. Podbel’skogo, St. Petersburg—Pushkin, 196608 Russia,e-mail;
3Laverov Federal Center for Integrated Arctic Research (FCIARctic) RAS, Naryan-Mar Agro-Experimental Station, Federal Agency of Scientific Organizations,1a, ul. Rybnikov, Naryan-Mar, Nenets AO, 166004 Russia, e-mail

Ilina L.A.
Laishev K.A.
Yildirim E.A.
Filippova V.A.
Dunyashev T.P.
Dubrowin A.V.
Novikova N.I.
Laptev G.Yu.
Yuzhakov A.A.
Romanenko Т.М.
Vylko Yu.P.

Received December 8, 2017


Reindeer husbandry is a strategically important industry in the Arctic regions of Russian Federation due to providing the native population with food stuffs. Observing the characteristics of rumen microorganisms’ composition is necessary to deepen the information on the reindeer physiology. In this paper, the results of molecular genetic analysis of the rumen bacterial community composition of young and adult specimen Rangifer tarandus individuals from Arctic regions of Russia are presented for the first time. Samples of ruminal contents were collected from 3 animals of each age group in 2017 summer-autumn period in the Yamal-Nenets Autonomous District and the Murmansk Province. The bacterial community composition of the reindeer rumen was analyzed in the laboratory of the «BIOTROF+» company by T-RFLP method (terminal restriction fragment length polymorphism). According to the biodiversity indicators, the Yamal-Nenets Autonomous District reindeer ruminal microorganisms’ diversity was significantly higher (P < 0.05) than that in the reindeers of Murmansk region. Young reindeers from the Yamalo-Nenets Autonomous District showed lower biodiversity indicators (P < 0.05) comparing to adults, whereas in the Murmansk region this was not observed. According to the taxonomic affiliation, it has been established that up to 83.50±5.07 % of the phylotypes belong to four bacterial phylums, the Firmicutes, Bacteroidetes, Actinobacteria and Proteobacteria, while Tenericutes, Fusobacteria, Acidobacteria, Cyanobacteria were less frequent. Ruminal microbiome of Rangifer tarandus reindeers showed much higher proportion of unidentified bacteria, as well as the Eubacteriaceae and Clostridiaceae bacteria, as compared to the most studied members of the Bovidae family. Note, that several Eubacteriaceae and Clostridiaceae members are capable of detoxification of usnic acid and other secondary metabolites produced by lichens. During the reindeer ontogenesis, noticeable changes in the ratio of phylotypes and taxonomic groups in rumen microbiota were found. The greatest age changes were noticed in the phylum Firmicutes composition. In adult reindeer rumen, the total counts of cellulosolytic bacteria of the Clostridia class, especially of the families Eubacteriaceae, Clostridiaceae and Lachnospiraceae potentially capable of hydrolysis of plant carbohydrates with the formation of volatile fatty acids (VFA), were significantly higher than in young group (P < 0.05). The inverse pattern was characteristic of bacteria with similar properties from the phylum Bacteroidetes, including the genera Bacteroides, Prevotella. Identification of a significant number of opportunistic and pathogenic microorganisms in the Rangifer tarandus rumen bacterial community, with the dominance of the phylum Fusobacteria, families Сampylobacteriaceae and Enterobacteriaceae, is also of interest. Up to date, this issue has been poorly observed. Direct regularity in changing ruminal pathogen profiles in reindeers of different age or from different habitat was not revealed. Perhaps the detected differences in the level of pathogenic and opportunistic microorganisms could be associated with other factors, e.g. specific pasture ration in different regions or the epizootic situation in the herd. Additional research will clarify the issues in question. In general, the obtained results can be used as a basis to develop recommendations for improving the efficiency of animals breeding.

Keywords: rumen microorganisms, molecular-genetic methods, reindeer, Rangifer tarandus, Arctic regions.


Full article (Rus)

Full article (Eng)



  1. Orpin C.G., Mathiesen S.D., Greenwood Y., Blix A.S. Seasonal changes in the ruminal microflora of the high-arctic Svalbard reindeer (Rangifer tarandus platyrhynchus). Appl. Environ. Microb., 1985, 50(1): 144-151.
  2. Sundset M.A., Edwards J.E., Cheng Y.F., Senosiain R.S., Fraile M.N., Northwood K.S., Præsteng K.E., Glad T., Mathiesen S.D., Wright A.D.G. Molecular diversity of the rumen microbiome of Norwegian reindeer on natural summer pasture. Microb. Ecol., 2009, 57: 335-348 CrossRef
  3. Mathiesen S.D., Mackie R.I., Aschfalk A., Ringø E., Sundset M.A. Microbial ecology of the gastrointestinal tract in reindeer — changes through season. In: Microbial ecology of the growing animal; Biology of the growing animals. V. 3. W. Holzapfel, P. Naughton (eds.). Elsevier Press, Oxford: 73-100.
  4. Sundset M.A., Edwards J.E., Cheng Y.F., Senosiain R.S., Fraile M.N., Northwood K.S., Praesteng K.E., Glad T., Mathiesen S.D., Wright A.D. Rumen microbial diversity in Svalbard reindeer, with particular emphasis on methanogenic archaea. FEMS Microbiol. Ecol., 2009, 70(3): 553-562 CrossRef
  5. Sundset M.A., Præsteng K.E., Cann I.K.O., Mathiesen S.D., Mackie R.I. Novel rumen bacterial diversity in two geographically separated sub-species of reindeer. Microb. Ecol., 2007, 54: 424-438 CrossRef
  6. Orpin C.G., Joblin K.N. The rumen anaerobic fungi. In: The rumen microbial ecosystem. P.N. Hobsen, C.S. Stewart (eds.). Blackie Academic & Professional, London, 1997: 140-195.
  7. Tarakanov B.V. Metody issledovaniya mikroflory pishchevaritel'nogo trakta sel'skokhozyaistvennykh zhivotnykh i ptitsy [Methods for studying microflora of the digestive tract of agricultural animals and poultry]. Moscow, 2006 (in Russ.). 
  8. Church D.C. Ruminant animal: Digestive physiology and nutrition. Prentice Hall, New Jersey, 1993.
  9. Hungate R.E. The rumen and its microbes. Academic Press, NY, 1966.
  10. Jami E., Mizrahi I. Composition and similarity of bovine rumen microbiota across individual animals. PLoS ONE, 2012, 7(3): e33306 CrossRef
  11. Veneman J.B., Muetzel S., Hart K.J., Faulkner C.L., Moorby J.M., Perdok H.B. Does dietary mitigation of enteric methane production affect rumen function and animal productivity in dairy cows PLoS ONE, 2015, 10(10): e0140282 CrossRef
  12. Snelling T.J., Genç B., McKain N., Watson M., Waters S.M., Creevey C.J., Wallace R.J. Diversity and community composition of methanogenic archaea in the rumen of Scottish upland sheep assessed by different methods. PLoS ONE, 2014, 9(9): e106491 CrossRef
  13. de la Fuente G., Belanche A., Girwood S.E., Pinloche E., Wilkinson T., Newbold C.J. Pros and cons of Ion-Torrent next generation sequencing versus Terminal Restriction Fragment Length Polymorphism T-RFLP for studying the rumen bacterial community. PLoS ONE, 2014, 9(7): e101435 CrossRef
  14. Salgado-Flores A., Hagen L.H., Ishaq S.L., Zamanzadeh M., Wright A.-D.G., Pope P.B. Rumen and cecum microbiomes in reindeer (Rangifer tarandus tarandus) are changed in response to a lichen diet and may affect enteric methane emissions. PLoS ONE, 2016, 11(5): e0155213. CrossRef
  15. Han X., Yang Y., Yan H., Wang X., Qu L., Chen Y. Rumen bacterial diversity of 80 to 110-day-old goats using 16S rRNA sequencing. PLoS ONE, 2015, 10(2): e0117811 CrossRef
  16. Wang L., Xu Q., Kong F., Yang Y., Wu D., Mishra S., Li Y. Exploring the goat rumen microbiome from seven days to two years. PLoS ONE, 2016, 11(5): e0154354 CrossRef
  17. Zielinska S., Kidawa D., Stempniewicz L., Los M., Los J.M. New insights into the microbiota of the Svalbard Reindeer Rangifer tarandus platyrhynchus. Front. Microbiol., 2016, 7: 170 CrossRef
  18. Gruninger R.J., Sensen C.W., McAllister T.A., Forster R.J. Diversity of rumen bacteria in Canadian cervids. PLoS ONE, 2014, 9(2): e89682 CrossRef
  19. Zhi-Peng L., Na J., Han-Lu L., Xue-Zhe C., Yi J., Fu-He Y., Guang-Yu L. Analysis of bacterial diversity in rumen of sika deer(Cervus nippon) fed different forages using DGGE and T-RFLP. China Agriculture Science, 2014, 47(4): 759-768 CrossRef
  20. Laptev G.Yu., Novikova N.I., Il'ina L.A., Iyldyrym E.A., Nagornova K.V., Dumova V.A., Soldatova V.V., Bol'shakov V.N., Gorfunkel' E.P., Dubrovina E.G., Sokolova O.N., Nikonov I.N., Lebedev A.A. Normy soderzhaniya mikroflory v rubtse krupnogo rogatogo skota Norms of microflora in rumen of cattle]. St. Petersburg, 2016 (in Russ.).
  21. Maniatis T., Fritsch E.F., Sambrook J. Molecular cloning: A laboratory manual. Cold Spring Harbor, NY, 1982.
  22. Samandas A.M., Laishev K.A., Samoilov S.G. Sibirskii vestnik sel'skokhozyaistvennoi nauki, 2011, 5-6: 92-96 (in Russ.).
  23. Laishev K.A., Samandas A.M., Mityukov A.S., Prokudin A.V., Silkina E.V. Izvestiya Sankt-Peterburgskogo gosudarstvennogo agrarnogo universiteta, 2011, 24: 118-121 (in Russ.).
  24. Nelson K.E., Zinder S.H., Hance I., Burr P., Odongo D., Wasawo D., Odenyo A., Bishop R. Phylogenetic analysis of the microbial populations in the wild herbivore gastrointestinal tract: insights into an unexplored niche. Environ. Microbiol., 2003, 5: 1212-1220 CrossRef
  25. Roach J.A.G., Musser S.M., Morehouse K., Woo J.Y.J. Determination of usnic acid in lichen toxic to elk by liquid chromatography with ultraviolet and tandem mass spectrometry determination. J. Agr. Food Chem., 2006, 54: 2484-2490 CrossRef
  26. Luzina O.A., Salakhutdinov N.F. Bioorganicheskaya khimiya, 2016, 3(42), 2016: 276 CrossRef (in Russ.). 
  27. Sundset M.A., Kohn A., Mathiesen S.D., Præsteng K.E. Eubacterium rangiferina, a novel usnic acid-resistant bacterium from the reindeer rumen. 2008. Naturwissenschaften, 95: 741-749 CrossRef
  28. Pankratov T.A., Kachalkin A.V., Korchikov E.S., Dobrovol'skaya T.G. Mikrobiologiya, 2017, 3(86): 265-283 CrossRef (in Russ.).
  29. Nocek J.E. Bovine acidosis: implications on laminitis. J. Dairy Sci., 1997, 80: 1005-1028 CrossRef