doi: 110.15389/agrobiology.2018.2.223eng

UDC 636.08:636.018:577.12/.17



V.P. Galochkina, A.V. Agafonova, V.A. Galochkin

All-Russian Research Institute of Animal Physiology, Biochemistry and Nutrition — Branch  of Ernst Federal Science Center for Animal Husbandry, Federal Agency of Scientific Organizations, pos. Institut, Borovsk, 249013 Russia, e-mail (✉ corresponding author V.A. Galochkin),

Galochkina V.P.
Galochkin V.A.
Agafonova A.V.

Received May 3, 2016


The authors believe that the explanation of the accumulated data on metabolic processes in highly productive ruminant animals, which for the time being remains within the framework of the existing physiological and biochemical paradigm, requires an in-depth interpretation on a fundamentally new experimental and conceptual basis, which assumes an analysis of the complex interconnections of the set of objects and their functions that were previously not considered. First, , it is necessary to consider the biochemistry of intracellular compartmentalization from a different point of view based on the strict mutual complementarity of the mitochondrial Krebs cycle and the cytoplasmic glycolysis and gluconeogenesis with a peroxisomal glyoxylate cycle. The possibility of glyoxylate cycle functioning in highly productive ruminants was postulated by the authors for the first time following from experimental data on catalytic activity of isocitrate lyase (EC and malate synthase (EC (V.P. Galochkina et al., 2012).The presence of these enzymes allows the synthesis of glucose from acetic acid, which comes in large quantities from the contents of the rumen. Ruminants are physiologically hypoglycemic. Phylogenetically, they mainly eat coarse vegetable food which increases the proportion of acetate in the rumen content. Easily hydrolyzed carbohydrates in the rumen content reduce the percentage of acetate and increase the proportion of propionate and butyrate, which results in a decreased pH (M. Oba et al., 2015).Permanent glucose deficiency causes an increase in the somatotropin to insulin level indicating an increase in the metabolically ineffective gluconeogenesis. Simultaneously, the blood concentration of unesterified fatty acidы increases, indicating an increase in lipolysis in fat depots. There is a low ratio of insulin to glucagon with an increase in urea concentration. Milk fat content reduces (F. Piccioli-Cappelli et al., 2014). Peroxysomes are partially capable of beta-oxidation of fatty acids to C 13, which facilitates Krebs cycle and allows changes in its metabolic orientation. The authors consider the glyoxylate cycle as a chance which enables the animal to improve metabolism and intensify productivity. Bicarbon acid oxidation is energetically more effective compared to tricarboxylic acid cycle, since the glyoxylate cycle is a shortened of tricarboxylic acid cycle capable of functioning without limiting isocitrate dehydrogenase and alpha-ketoglutarate dehydrogenase reactions (V.P. Galochkina et al., 2011). Secondly, one must considered hypothetical provisions on the leading regulatory role of multifactorial interrelationships between mono- and multimolecular constellations of mono- and polymeric biologically active substances, hormones and enzymes, both temporarily formed and constant. This extensive group of specific agents includes insulin, peroxisomal cysteamine, glyoxylic acid, oxygen, hydroperoxide and D-amino acid oxidases. The theoretical positions stated in the article have passed primary validation in model experiments on intensively fattened bulls with the use of clenbuterol, the agonist of beta-adrenergic receptors.

Keywords: regulation of metabolism, peroxisomes, glyoxylate cycle, D-amino acid oxidase, glyoxylate, cysteamine, insulin, hydroperoxide, oxygen.


Full article (Rus)

Full article (Eng)



  1. Galochkina V.P., Solodkova A.V., Galochkin V.A. Trudy regional'nogo konkursa proektov fundamental'nykh nauchnykh issledovanii,2012, 17: 205-214 (in Russ.).
  2. Oba M., Mewis J.L., Zhining Z. Effects of ruminal doses of sucrose, lactose, and cornstarch on ruminal fermentation and expression of genes in ruminal epithelial cells. J. Daire Sci.,2015, 98(1): 586-594 CrossRef
  3. Piccioli-Cappelli F., Loor J.J., Seal C.J., Minuti A., Trevisi E. Effect of dietary starch level and high rumen-undegradable protein on endocrine-metabolic status, milk yield, and milk composition in dairy cows during early and late lactation. J. Dairy Sci., 2014, 97(12): 7788-80 CrossRef
  4. Galochkina V.P., Solodkova A.V., Galochkin V.A. Problemy biologii produktivnykh zhivotnykh, 2011, 4: 5-18 (in Russ.).
  5. Galochkin V.A., Agafonova A.V., Galochkina V.P., Cherepanov G.G. Problemy biologii produktivnykh zhivotnykh,2015, 1: 5-25 (in Russ.).
  6. Sandalio L.M., Romero-Puertas M.C. Peroxisomes sense and respond to environmental cues by regulating ROS and RNS signalling networks. Ann. Bot., 2015, 116(4): 475-485 CrossRef
  7. Pascual-Ahuir A., Manzanares-Estreder S., Proft M. Pro- and antioxidant functions of the peroxisome-mitochondria connection and its impact on aging and disease. Oxid. Med. Cell Longev.,2017, 2017: 9860841 CrossRef
  8. Del Río L.A., López-Huertas E. ROS generation in peroxisomes and its role in cell signaling. Subcell. Biochem., 2013, 69: 231-55 CrossRef
  9. Santillo A., Falvo S., Chieffi P., Burrone L., Chieffe Baccari G., Longobardi S., Di Fiore M.M. D-aspartate affects NMDA receptor-extracellular signal-regulated kinase pathway and upregulates androgen receptor expression in the rat testis. Theriogenology, 2014, 81(5): 744-751 CrossRef
  10. De Duve C., Baudhuin P. Peroxisomes (microbodies and related particles).Physiol. Rev., 1966, 46: 323–357 CrossRef
  11. Schrader M., Yoon Y. Mitochondria and peroxisomes: are the ‘Big Brother’ and the ‘Little Sister’ closer than assumed Bioassays, 2007, 29: 1105-1114 CrossRef
  12. Camoes F., Bonekamp N.A., Delille H.K., Schrader M. Organelle dynamics and dysfunction: a closer link between peroxisomes and mitochondria. J. Inherit. Metab. Dis., 2009, 32: 163-180 CrossRef
  13. Ohide H., Miyoshi Y., Maruyama R., Hamase K., Konno R. D-Amino acid metabolism in mammals: biosynthesis, degradation and analytical aspects of the metabolic study. Journal of Chromatography B: Biomedical Sciences and Applications, 2011, 879(29): 3162-3168 CrossRef
  14. He L., He T., Farrar S., Ji L., Liu T., Ma X. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol. Biochem., 2017, 44(2): 532-553 CrossRef
  15. Tripathi D.N., Walker C.L. The peroxisome as a cell signaling organelle. Curr. Opin. Cell Biol., 2016, 39: 109-12 CrossRef
  16. Trompier D., Vejux A., Gondcaille C., Geillon F., Nury T., Savary S., Lizard G. Brain peroxisomes. Biochimie, 2014, 98: 102-110 CrossRef
  17. Yamanaka M., Miyoshi Y., Ohide H., Hamase K., Konno R. D-Amino acids in the brain and mutant rodents lacking D-amino acid oxidase activity. Amino Acids, 2012, 43(5): 1811-1821 CrossRef
  18. Haruta N., Iizuka H., Ishii K., Yoshihara S., Ichiba H. Alteration in the plasma concentration of a DAAO inhibitor, 3-methylpyrazole-5-carboxylic acid, in the ketamine-treated rats and the influence on the pharmacokinetics of plasma D-tryptophan. Proc. Jpn. Acad. Ser. B. Phys. Biol. Sci., 2011, 87(10): 641-648 CrossRef
  19. Sasabe J., Suzuki M., Imanishi N. Activity of D-amino acid oxidase is widespread in the human central nervous system. Front. Synaptic Neurosci., 2014, 6: 14 CrossRef
  20. Zhao W.J., Yin M. Advances in the study of D-amino acid oxidase in the central nervous system. Sheng Li Ko Hsueh Chin Chan [Progress in physiological sciences], 2008, 39(1): 64-66 (in Chinese) (PMID: 18357693).
  21. Hayes G.R., Lockwood D.N. Role of insulin receptor phosphorylation in the insulinomimetic effects of hydrogen peroxide. PNAS USA, 1987, 84(22): 8115-8119 CrossRef
  22. Hamilton G.A. Peroxisomal oxidases and suggestions for the mechanism of action of insulin and other hormones. In: Advances in enzymology and related areas of molecular biology. A. Meister (ed.). John Wiley & Sons, 1985, V. 57: 85-178 CrossRef
  23. Hamilton G.A., Buckthal D.J., Mortensen R.M., Zerby K.W. Reactions of cysteamine and other amine metabolites with glyoxylate and oxygen catalyzed by mammalian D-amino acid oxidase. PNAS USA, 1979, 76(6): 2625-2629 (PMCID: PMC383660 PMID: 37501).
  24. Farias R.N. Insulin-membrane interaction and membrane fluidity changes. Biochim. Biophys. Acta, 1987, 906(3): 459-468 CrossRef
  25. Nishina Y. Structure and reaction mechanism of D-amino acid oxidase. SEIKAGAKU [Journal of Japanese Biochemical Society], 2008, 80(6): 569-578 (in Japanese) (PMID: 18634432).
  26. Haruta N., Iizuka H., Ishii K., Yoshihara S., Ichiba H., Fukushima T. Alteration in the plasma concentration of a DAAO inhibitor, 3-methylpyrazole-5-carboxylic acid, in the ketamine-treated rats and the influence on the pharmacokinetics of plasma D-tryptophan. Proceedings of the Japan Academy. Series B, Physical and biological sciences, 2011, 87(10): 641-648 CrossRef
  27. Hawkins J., Mahony D., Maetschke S., Wakabayashi M., Teasdale R.D., Bodén M. Identifying novel peroxisomal proteins. Proteins, 2007, 69: 606-616 CrossRef
  28. Salido E., Pey A.L., Rodriguez R., Lorenzo V. Primary hyperoxalurias: disorders of glyoxylate detoxification. Biochim. Biophys. Acta, 2012, 1822(9): 1453-1464 CrossRef
  29. Lu J.M., Gong N., Wang Y.C., Wang Y.X. D-Amino acid oxidase-mediated increase in spinal hydrogen peroxide is mainly responsible for formalin-induced tonic pain. Br. J. Pharmacol., 2012, 165(6): 1941-1955 CrossRef
  30. Gustafson E.C., Morgans C.W., Tekmen M., Sullivan S.J., Esguerra M., Konno R., Miller R.F. Retinal NMDA receptor function and expression are altered in a mouse lacking D-amino acid oxidase. J. Neurphysiol., 2013, 110(12): 2718-2726 CrossRef
  31. Khoronenkova S.V., Tishkov V.I. D-amino acid oxidase: physiological role and applications. Biochemistry, 2008, 73(13): 1511-1518 CrossRef
  32. Kawazoe T., Park H.K., Iwana S., Tsuge H., Fukui K. Human D-amino acid oxidase: an update and review. Chem. Rec., 2007, 7(5): 305-315 (doi:10.1002/tcr.20129).
  33. Bonekamp N.A., Volkl A., Fahimi H.D., Schrader M. Reactive oxygen species and peroxisomes: struggling for balance. BioFactors, 2009, 35: 346-355 CrossRef
  34. Galochkina V.P., Galochkin V.A. Problemy biologii produktivnykh zhivotnykh, 2007, 2: 84-93 (in Russ.).
  35. Galochkina V.P., Galochkin V.A. Uspekhi fiziologicheskikh nauk, 2009, 49(1): 66-76 (in Russ.).
  36. Fomichev Yu.P., Levantin D.L., Dzyuba N.F., Radchenkov V.P., Butrov E.V., Golenkevich E.K. Vestnik sel'skokhozyaistvennoi nauki, 1977, 2(245): 85-92 (in Russ.).
  37. Islinger M., Grille S., Fahimi D.H., Schrader M. The peroxisome: an update on mysteries. Histochem. Cell Biol., 2012, 137(5): 547-574 CrossRef
  38. Yang T., Poovaiah B.W. Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin. PNAS USA, 2002, 99(6): 4097-4102 CrossRef
  39. Tsai S.C., Lu C.C., Lin C.S., Wang P.S. Antisteroidogenic actions of hydrogen peroxide on rat Leydig cells. J. Cell. Biochem., 2003, 90: 1276-1286 CrossRef
  40. Volvenkin S.V., Popov V.N., Eprintsev A.T. Biokhimiya, 1999, 64(9): 1185-1191 (in Russ.).
  41. Popov V.N., Volvenkin S.V., Eprintsev A.T., Igamberdiev A.U. Glyoxylate cycle enzymes are present in liver peroxisomes of alloxan-treated rats. FEBS Lett., 1998, 440(1-2): 55-58 CrossRef
  42. Kondrashova M.N., Rodionova M.A. Doklady AN SSSR, 1971, 196(5): 1225-1227 (in Russ.).
  43. Popov V.N., Volvenkin S.V., Eprintsev A.T., Igamberdiev A.U. Izvestiya RAN, Seriya biologicheskaya, 2000, 6: 672-678 (in Russ.).