doi: 10.15389/agrobiology.2017.2.391eng

UDC 636.2:575.174.015.3:578.2:577.2.08:51-76

 

CHANGES IN LEUKOCYTE AND ERYTHROCYTE BLOOD PROFILE
AND PARAMETERS UNDER A COMBINED Anaplasma marginale
AND BOVINE LEUKEMIA VIRUS INFECTION IN CATTLE

G.Yu. Kosovskii1, V.I. Glazko1, 2, S.N. Koval’chuk1, T.T. Glazko1, 2

1Center for Experimental Embryology and Reproductive Biotechnology, Federal Agency of Scientific Organizations, 12/4, ul. Kostyakova, Moscow, 127422 Russia,
e-mail vigvalery@gmail.com, gkosovsky@mail.ru, s.n.kovalchuk@mail.ru, tglazko@rambler.ru (corresponding author);
2K.A. Timiryazev Russian State Agrarian University—Moscow Agrarian Academy, 49, ul. Timiryazevskaya, Moscow, 127550 Russia

The authors declare no conflict of interests

ORCID:

Kosovskii G.Yu. orcid.org/0000-0003-3808-3086

Koval’chuk S.N. orcid.org/0000-0002-5029-0750

Glazko V.I. orcid.org/0000-0002-8566-8717

Glazko T.T. orcid.org/0000-0002-3879-6935

Received December 5, 2016

 

The global spread of infectious diseases and large-scale import of cattle genetic resources lead to necessity of developing screening methods that estimate the danger of co-infection with different pathogens and its impact on animal adaptiveness. In this regard here we analyzed the variability of erythrocyte and leukocyte characteristics in dairy Black-and-White holsteinized cattle naturally infected by Anaplasma marginale, the causative agent of bovine anaplasmosis, and bovine leukemia virus (BLV). The results showed that BLV infection of cattle did not facilitate the cross-infection with A. marginale in cattle since more than half of A. marginale-free animals were BLV-infected, and about one-third cows were characterized by leukocytosis. Except an increased number of leukocytes and lymphocytes due to retroviral infection, A. marginale-free animals were characterized only by the absence of statistically significant correlation between the counts of erythrocytes and neutrophils as compared to A. marginale-infected cows, which may point at the activation of nonspecific defense mechanisms in A. marginale-infected animals. Testing animals for BLV infection by agar gel immunodiffusion (AGID) and polymerase chain reaction (PCR) assays revealed the proviral DNA integration in one AGID-negative cow, whereas in seven out of thirty four AGID-positive cows the proviral DNA was absent. Leukocytosis (> 20x109 blood leukocytes per liter) was revealed only in six AGID- and PCR-positive cows. The only common feature of BLV-infected animals with moderate and severe leukocytosis was thrombocytosis, as well as disruption of correlational relationships between the number of agranulocytes and granulocytes in peripheral blood. The detected disruption of the network relationships between different leukocyte populations reflects deep changes in the immune system functioning induced by retroviral infection. We observed a deficiency of neutrophils in cows with leukocytosis, which is in consistency with the data on neutropenia in milk of BLV-infected cows with leucosis (M. Nishiike et al., 2016). Considering the absence of BLV diagnostic tests that are able to reliably exclude the false-positive or false-negative results, it seems that the most effective approach for herd sanitation may consist in a simultaneous quantification of viral load (the number of BLV RNA in peripheral blood cells) and estimation of  leukocytosis severity..

Keywords: anaplasmosis, bovine leukemia virus, viral load, leukocytosis, neutropenia, erythrocyte and leukocyte characteristics.

 

Full article (Rus)

Full text (Eng)

 

REFERENCES

  1. Nishiike M., Haoka M., Doi T., Kohda T., Mukamoto M. Development of a preliminary diagnostic measure for bovine leukosis in dairy cows using peripheral white blood cell and lymphocyte counts. J. Vet. Med. Sci.,2016, 78(7): 1145-1151 CrossRef
  2. Raszek M.M., Guan L.L., Plastow G.S.  Use of genomic tools to improve cattle health in the context of infectious diseases. Front. Genet., 2016, 7: 30 CrossRef
  3. Ott S.L., Johnson R., Wells S.J. Association between bovine-leukosis virus seroprevalence and herd-level productivity on US dairy farms. Prev. Vet. Med., 2003, 61(4): 249-262 CrossRef.
  4. Gillet N., Florins A., Boxus M., Burteau C., Nigro A., Vandermeers F., Balon H., Bouzar A.B., Defoiche J. Mechanisms of leukemogenesis induced by bovine leukemia virus: prospects for novel anti-retroviral therapies in human. Retrovirology, 2007, 4: 18 CrossRef
  5. Polat M., Takeshima S.N., Hosomichi K., Kim J., Miyasaka T., Yamada K., Arainga M., Murakami T., Matsumoto Y., de la Barra Diaz V., Panei C.J., González E.T., Kanemaki M., Onuma M., Giovambattis-
    ta G., Aida Y. A new genotype of bovine leukemia virus in South America identified by NGS-based whole genome sequencing and molecular evolutionary genetic analysis. Retrovirology, 2016, 13: 4 CrossRef
  6. Gutiérrez G., Rodríguez S.M., de Brogniez A., Gillet N., Golime R., Burny A., Jaworski J.P., Alvarez I., Vagnoni L., Trono K., Willems L. Vaccination against d-retroviruses: the bovine leukemia virus paradigm. Viruses, 2014, 6(6): 2416-2427 CrossRef
  7. Ohira K., Nakahara A., Konnai S., Okagawa T., Nishimori A., Maekawa N., Ikebuchi R., Kohara J., Murata S., Ohashi K. Bovine leukemia virus reduces anti-viral cytokine activities and NK cytotoxicity by inducing TGF-β secretion from regulatory T cells. Immun. Inflamm. Dis., 2016, 4(1): 52-63 CrossRef
  8. Ikebuchi R., Konnai S., Okagawa T., Nishimori A., Nakahara A., Murata S., Ohashi K. Differences in cellular function and viral protein expression between IgM high and IgM low B-cells in bovine leukemia virus-infected cattle. J. Gen. Virol., 2014, 95(8): 1832-1842 CrossRef
  9. Fitzgerald S.D., Sledge D.G., Maes R., Wise A., Kiupel M. Coinfection of a cow with Bovine leukemia virus and Mycobacterium bovis. J. Vet. Diagn. Invest., 2009,21(6): 878-882.
  10. Erskine R.J., Bartlett P.C., Sabo K.M., Sordillo L.M. Bovine leukemia virus infection in dairy cattle: effect on serological response to immunization against J5 Escherichia coli bacterin. Vet. Med. Int., 2011, 2011: Article ID 915747 CrossRef
  11. Della Libera A.M.M.P., de Souza F.N., Batista C.F., Santos B.P., de Azevedo L.F.F., Sanchez E.M.R., Diniz S.A., Silva M.X., Haddad J.P., Blagitz M.G. Effects of bovine leukemia virus infection on milk neutrophil function and the milk lymphocyte profile. Vet. Res.., 2015, 46: 2 CrossRef
  12. Kocan K.M., de la Fuente J., Guglielmone A.A., Melendez R.D. Antigens and alternatives for control of Anaplasma marginale infection in cattle. Clin. Microbiol. Rev., 2003 16: 698-712 CrossRef
  13. Kivaria F.M. Estimated direct economic costs associated with tick-borne diseases on cattle in Tanzania. Trop. Anim. Health. Prod., 2006, 38(4): 291-299 CrossRef
  14. Kocan K.M., de la Fuente J., Blouin E.F., Coetzee J.F., Ewing S.A. The natural history of Anaplasma marginale. Vet. Parasitol., 2010, 167: 95-107 CrossRef
  15. Belkahia H., Ben Said M., Alberti A., Abdi K., Issaoui Z., Hattab D., Gharbi M., Messadi L. First molecular survey and novel genetic variants' identification of Anaplasma marginale, A. centrale and A. bovis in cattle from Tunisia. Infect. Genet. Evol., 2015, 34: 361-371 CrossRef
  16. Ait Hamou S., Rahali T., Sahibi H., Belghyti D., Losson B., Goff W., Rhalem A. Molecular and serological prevalence of Anaplasma marginale in cattle of North Central Morocco. Res. Vet. Sci., 2012, 93: 1318-1323 CrossRef
  17. Kubelová M., Mazancová J., Siroký P. Theileria, Babesia and Anaplasma detected by PCR in ruminant herds at Bié Province, Angola. Parasite, 2012, 19: 417-422 CrossRef
  18. Mutshembele A.M., Cabezas-Cruz A., Mtshali M.S., Thekisoe O.M., Galindo R.C., de la Fuente J. Epidemiology and evolution of the genetic variability of Anaplasma marginale in South Africa. Ticks Tick Borne Dis., 2014, 5: 624-631 CrossRef
  19. Georgiu Kh., Belimenko V.V. Sel'skokhozyaistvennye zhivotnye, 2015, 1: 5-7 (in Russ.).
  20. Liberman E.L., Khlyzova T.A. Educatio, 2015, 3: 46-50 (in Russ.).
  21. Kazakov N.A. Vetpatologiya, 2008, 2: 68-70 (in Russ.).
  22. Brown W.C. Adaptive immunity to Anaplasma pathogens and immune dysregulation: implications for bacterial persistence. Comp. Immunol. Microbiol. Infect. Dis., 2012, 35(3): 241-252 CrossRef
  23. Waal D.T. Anaplasmosis control and diagnosis in South Africa. Ann. N.Y. Acad. Sci., 2000, 916: 474-483 CrossRef
  24. Ristic M. Bovine anaplasmosis. In: Parasitic Protozoa. J. Kreier (ed.). Academic Press, NY, 1977. V. 4: 235-249.
  25. Richey E.J. Bovine anaplasmosis. In: Current veterinary therapy food animal practice. R.J. Howard (ed.). The W.B. Saunders Co., Philadelphia, 1981.
  26. Palmer G.H., Rurangirwa F.R., Kocan K.M., Brown W.C. Molecular basis for vaccine development against the ehrlichial pathogen Anaplasma marginale. Parasitology, 1999, 15(7): 281-286.
  27. Futse J.E., Ueti M.W., Knowles D.P., Palmer G.H. Transmission of Anaplasma marginale by Boophilus microplus: retention of vector competence in the absence of vector-pathogen interaction. J. Clin. Microbiol., 2003, 41: 3829-3834 CrossRef
  28. Han S., Norimine J., Brayton K.A., Palmer G.H., Scoles G.A., Brown W.C. Anaplasma marginale infection with persistent high-load bacteremia induces a dysfunctional memory CD4+ T lymphocyte response but sustained high IgG titers. Clin. Vaccine Immunol., 2010, 17: 1881-1890 CrossRef
  29. de la Fuente J., Garcia-Garcia J.C., Blouin E.F., McEwen B.R., Clawson D., Kocan K.M. Major surface protein 1a effects tick infection and transmission of Anaplasma marginale. Int. J. Parasitol., 2001, 31: 1705-1714 CrossRef
  30. Kocan K.M., de la Fuente J., Guglielmone A.A., Melendez R.D. Antigens and alternatives for control of Anaplasma marginale infection in cattle. Clin. Microbiol. Rev., 2003, 16: 698-712 CrossRef
  31. Palmer G.H., McGuire T.C. Immune serum against Anaplasma marginale initial bodies neutralizes infectivity for cattle. J. Immunol., 1984; 133: 1010-1015.
  32. Tebele N., McGuire T.C., Palmer G.H. Induction of protective immunity using Anaplasma marginale initial body membranes. Infect. Immun., 1991, 59: 3199-3204.
  33. Palmer G.H., Eid G., Barbet A.F., McGuire T.C., McElwain T.F. The immunoprotective Anaplasma marginale major surface protein-2 (MSP-2) is encoded by a polymorphic multigene family. Infect. Immun., 1994, 62: 3808-3816.
  34. Palmer G.H., McElwain T.F. Molecular basis for vaccine development against anaplasmosis and babesiosis. Vet. Parasitol., 1995, 57: 233-253.
  35. Lopez J.E., Siems W.F., Brayton K.A., Palmer G.H., McGuire T.C.,
    Brown W.C. Identification of novel antigenic proteins in a complex Anaplasma marginale outer membrane immunogen by mass spectrometry and genomic mapping. Infect. Immun., 2005, 73: 8109-8118 CrossRef
  36. Auezova R., Ryskeldiev N., Doskaliyev A., Kuanyshev Y., Zhetpisbaev B., Aldiyarova N., Ivanova N., Akshulakov S., Auezova L. Association of preoperative levels of selected blood inflammatory markers with prognosis in gliomas. Onco Targets Ther., 2016, 9: 6111-6117 CrossRef.
  37. Kosovskii G.Yu., Sotnikova E.A., Mudrik N.N., Cuong V.C., Toan T.X., Ho-
    an T.X., Glazko V.I. Veterinariya, 2013, 8: 58-61 (in Russ.).
  38. Koval’chuk S . N ., Kosovskii G .Yu.,Arkhipov A.V.,Glazko T.T., GlazkoV.I. Development of real-time PCR assay for detection of Anaplasmamarginale. Agricultural Biology, 2015, 50(6): 825-831 CrossRef (in Engl.).
  39. Koval'chuk S.N., Babii A.V., Arkhipova A.L., Arkhipov A.V., Kosovskii G.Yu. Problemy biologii produktivnykh zhivotnykh, 2016, 3: 98-105 (in Russ.).
  40. Raszek M.M., Guan L.L., Plastow G.S. Use of genomic tools to improve cattle health in the context of infectious diseases. Front. Genet., 2016, 7: 30 CrossRef
  41. Oblap R.V., Glazko V.I., Sozinov A.A. Tstologiya i genetika, 1997, 31(2): 41-43 (in Russ.).
  42. Takamatsu H., Inumaru S., Nakajima H. Inhibition of in vitro immunocyte function by sera from cattle with bovine leukosis. Vet. Immunol. Immunopathol., 1988, 18: 349-359.
  43. Arainga M., Takeda E., Aida Y. Identification of bovine leukemia virus tax function associated with host cell transcription, signaling, stress response and immune response pathway by microarray-based gene expression analysis. BMC Genomics, 2012, 13: 121 CrossRef
  44. Aida Y., Murakami H., Takahashi M., Takeshima S.N. Mechanisms of pathogenesis induced by bovine leukemia virus as a model for human T-cell leukemia virus. Front. Microbiol., 2013, 4: 328 CrossRef
  45. Kosovskii G.Yu., Glazko V.I., Andreichenko I.A., Koval’chuk S.N., Glazko T.T. The infection hazard of carriers of proviral bovine leukemia virus and its evaluation with regard to leukocytosis. Agricultural Biology, 2016, 51(4): 475-482 CrossRef (in Engl.).

back