doi: 10.15389/agrobiology.2017.2.282eng

UDC 636.082:599.735.51:591.463.1

Supported financially by RAS Presidium Program № IV.13.3



B.S. Iolchiev1, А.I. Abilov1, A.V. Tadzhieva2, V.A. Bagirov1,
Sh.N. Nasibov3, I.N. Shaidullin1, P.M. Klenovitskiy1,
N.A. Kombarova4, M.A. Zhilinskiy1

1L.K. Ernst All-Russian Research Institute of Animal Husbandry, Federal Agency of Scientific Organizations, 60, pos. Dubrovitsy, Podolsk District, Moscow Province, 142132 Russia, e-mail (corresponding author);
2Peoples’ Friendship University of Russia, 6, ul. Miklukho-Maklaya, Moscow, 117198 Russia;
3All-Russian Research Institute of Agricultural Biotechnology, Federal Agency of Scientific Organizations, 42, ul. Timiryazevskaya, Moscow, 127550 Russia;
4Head Centre for Reproduction of Farm Animals, 2, ul. Tsentralnaya, pos. Bykovo, Podolsk municipal district, Moscow Province, 142143 Russia

The authors declare no conflict of interests


Iolchiev B.S. 

Klenovitskiy P.M.

Bagirov V.A.

Zhilinskiy M.A.

Shaidullin I.N.


Received December 30, 2016


Conservation of biodiversity is one of the global challenges of the modern world. The preservation of animal genetic resources is considered essential for the food supply, since sustainable food production appears to be the greatest problem due to the human population growth, depletion of the Earth’s natural resources, and many species becoming endangered. In situ and ex situ methods of preservation of the species (i.e. in/out of their natural habitats, respectively) are two major approaches to animal biodiversity conservation. Ex situ strategy involves the techniques for the genetic material cryopreservation. Cryopreservation of the wildlife biomaterials allows to use these genetic resources not only for the conservation and the renewal, but also for the introduction into the genotype of the farm animals. The bison (Bison bonasus) is identified as the rare and endangered species. At present, the free-living bison population in Russia comprises more than 1500 animals. A research concept of the Russian bison gene pool preservation includs creating cryo-preserved pool of bison spermatozoa. In this paper we report findings on biological adequacy of the cryopreserved epididymal bison semen after the long storage (for more than 20 years). The sperm samples were collected postmortem from the testicular appendages of four bison males sustained the injuries incompatible with life or culled and used for hunting. For the assessment of semen motility we used a computer-assisted semen analysis (CASA) device; the DNA fragmentation index was assessed in AO-test with the acridine orange staining. The acrosomal integrity was studied by Diff-Quik staining method. It was shown that the semen quality parameters differed significantly due to the individual peculiarities of the bison. The spermatozoa of A + B grade which performed good motility and rectilinear motion reached more than 28 % in the semen of the males Mutfil and Morus, while in the Avel’s and Misir’s semen over 67 % spermatozoa were non-motile and 12.1 % and 10.4 % spermatozoa exhibited rotational and vibrational motions, respectively. The frequency of spermatozoa with pathomorphological changes significantly varied depending on the individual properties of the bison, with the greatest and the lowest values of 14.6 % and 6.8 %, respectively. The DNA fragmentation index reflecting sperm chromatin integrity can depend on the numerous biotic and abiotic factors and may vary in great ranges. In our surveys, it varied from 7 % to 86 %. For all the morphometric parameters, except the head width, the bison spermatozoa were inferior to the spermatozoa of the bulls though the differences between animal groups were not statistically significant. However, the area of the spermatozoa head in bulls was 3.14 mm2 larger than that of bison.

Keywords: European bison, Bison bonasus, cryopreservation, spermatozoa, acrosome, index of DNA fragmentation, chromatin.


Full article (Rus)

Full text (Eng)



  1. Bagirov V.A., Ernst L.K., Klenovitskii P.M., Zinov'eva N.A. Tsitologiya, 2004, 46(9): 767-768. Available No date (in Russ.).
  2. Gusev M.V., Melekhova O.P., Romanova E.P. Cokhranenie i vosstanovlenie bioraznoobraziya [Preservation and restoration of biodiversity]. Moscow, 2002 (in Russ.).
  3. Ryumina E.V., Karachevtsev I.L. Ekonomika prirodopol'zovaniya, 2005, 1: 112-118 (in Russ.).
  4. Tishkov A.A. Biosfernye funktsii prirodnykh ekosistem Rossii [Biospheric functions of natural ecosystems sht Russia]. Moscow, 2005 (in Russ.).
  5. Shaidullin I.N. Biologicheskie osobennosti akklimatizatsii ovets i gibridizatsii ikh so snezhnym baranom Ovis nivicola nivicola v usloviyakh Kamchatki. Doktorskaya dissertatsiya [Biological features of sheep under acclimatization in Kamchatka and hybridization with Ovis nivicola nivicola. DSci Thesis]. Dubrovitsy, 1994 (in Russ.).
  6. Bagirov V.A., Ernst L.K., Nasibov S.N., Klenovitskiy P.M., Iolchiev B.S., Zinov'eva N.A. Dostizheniya nauki i tekhniki APK,  2009, 7: 54-56. Available No date (in Russ.).
  7. Iolchiev B.S., Klenovitskii P.M., Bagirov V.A., Voevodin V.A., Konon-
    ov V.P., Nasibov Sh.N. Problemy biologii produktivnykh zhivotnykh, 2011, 1: 29-31. Available No date (in Russ.).
  8. Nasibov Sh.N., Iolchiev B.S., Klenovitskiy P.M., Bagirov V.A., Voevodin V.A., Zinov'eva N.A. Dostizheniya nauki i tekhniki APK, 2010, 9: 50-51. Available No date.
  9. Bagirov V.A., Gladyr' E.A., Ernst L.K., Klenovitskii P.M., Zinov'eva N.A., Nasibov Sh.N. [Preservation and efficient use of genetic resources of yak (Bos mutus)]. Agricultural Biology, 2009, 2: 37-42 (in Russ.).
  10. Ryabova E.V. Bioraznoobrazie i sposoby ego sokhraneniya [Biodiversity — the ways to preservation]. Kirov, 2012 (in Russ.).
  11. Pereira R.M., Marques C.C. Animal oocyte and embryo cryopreservation. Cell and Tissue Banking, 2008, 9(4): 267-277 CrossRef
  12. Roldan E.R., Gomendio M., Garde J.J., Espeso G., Ledda S., Berlinguer F., DelOlmo A., Soler A.J., Arregui L., Crespo C., Gonzales R. Inbreeding and reproduction in endangered ungulates: preservation of genetic variation through the organization of genetic resource banks. Reprod. Domest. Anim., 2006, 41: 82-89 CrossRef
  13. Hanks J. Conservation strategies for Africa’s large mammals. Reprod. Fert. Develop., 2001, 13(7-8): 459-468.
  14. Singina G.N., Volkova N.A., Bagirov V.A., ZinovievaN.A.Cryobanking of somatic cells in conservation of animal genetic resources: prospects and successes (review). Agricultural Biology, 2014, 6: 3-14 CrossRef (in Engl.).
  15. Blackburn H.D. Development of national animal genetic resource programs. Reprod. Fert. Develop., 2004, 16: 27-32 CrossRef
  16. Hiemstra S.J., van der Lende T., Woelders H. The potential of cryopreservation and reproductive technologies for animal genetic resources conservation strategies. Proc. Int. Workshop «The role of biotechnology for the characterisation and conservation of crop, forestry, animal and fishery genetic resources» (Italy, 5-7 March 2005). Turin, 2005: 25-36.
  17. Boettcher P.J., Stella A., Pizzi F., Gandini G. The combined use of embryos and semen for cryogenic conservation of mammalian livestock genetic resources. Genet. Sel. Evol., 2005, 37(6): 657-675 CrossRef
  18. Niemann H., Lucas-Hahn A. Somatic cell nuclear transfer cloning: practical applications and current legislation. Reprod. Domest. Anim., 2012, 47(5): 2-10 CrossRef
  19. Blackburn H.D. Genebank development for the conservation of livestock genetic resources in the United States of America. Livestock Sci., 2009, 120: 196-203 CrossRef
  20. Mariante A., Albuquerque M., Egito A., McManus C., Lopes M., Paiva S. Present status of the conservation of livestock genetic resources in Brazil. Livestock Sci., 2009, 120: 204-212 CrossRef
  21. Martynik E. Animal genetic resources in Poland: successes and obstacles. Proc. Workshop «International strategic programs for the conservation of animal genetic resources for food and agriculture». C. Lessard (ed.). Vancouver, B.C., 2010: 29-35 (ISBN: 978-0-88880-566-9).
  22. Richards K., Lessard C., Plante Y., Anzar M. Canadian animal genetic resources program. Proc. Workshop «International strategic programs for the conservation of animal genetic resources for food and agriculture». C. Lessard (ed.). Vancouver, B.C., 2010: 12-18 (ISBN: 978-0-88880-566-9).
  23. Nemtsev A.S., Rautian G.S., Puzachenko A.Yu., Sipko T.P., Kalabushkin B.A., Mironenko I.V. Zubr na Kavkaze [Bison in the Caucasus]. Moscow, 2003 (in Russ.).
  24. Flint V.E., Belousova I.P., Pererva V.I., Kaz'min V.D., Kiseleva E.G., Kudryavtsev I.V., Pirozhkov N.V., Sipko T.G. Strategiya sokhraneniya zubrov v Rossii [Strategy for bison preservation in Russia]. Moscow, 2002 (in Russ.).
  25. Iolchiev B.S., Strekozov N.I., Abilov A.I., Klenovitskii P.M., Sipko T.P. Sokhranenie genofonda zubrov i ikh ispol'zovanie v mezhvidovoi gibridizatsii [Bison: gene pool preservation and use in interspecies hybridization]. Dubrovitsy, 2005 (in Russ.).
  26. Nishi J.S. A Review of best practices and principles for bison disease issues: greater Yellowstone and Wood Buffalo areas. Wildlife Conservation Society and American Bison Society (ABS), ABS Working Paper No. 3. Bronx, NY, USA, 2010.
  27. McFarlane K., Wilson G.A., Nishi J.S. Management strategies for conservation of genetic diversity in wood bison (Bison bison athabascae). File Report No. 135. Department of Environment and Natural Resources, Government of the Northwest Territories, Yellowknife, Northwest Territories, Canada, 2006.
  28. Shury T.K., Woodley S.J., Reynolds H.W. Proceedings of the Bison Diseases Technical Workshop. Parks Canada, Gatineau, Quebec, 2005.
  29. Abilov A.I., Ernst L.K., Strekozov N.I., Kononov V.P., Sipko T.P. Metodicheskie rekomendatsii po polucheniyu gibridov putem osemeneniya domashnikh korov (Vos taurus) «epididimal'nym semenem» dikikh zubrov (Bison bonasus) [Hybridisation of cows (Vos taurus) with wild bison (Bison bonasus) using epididymal semen — puidelines]. Dubrovitsy, 1994 (in Russ.).
  30. Strekozov N.I., Iolchiev B.S., Abilov A.I., Vinogradov V.N., Kiseleva E.G., Sipko T.P. Doklady RASKHN, 1997, 6: 28-29 (in Russ.).
  31. Iolchiev B.S., Abilov A.I., Strekozov N.I. Doklady RASKHN, 2004, 5: 35-36. Available No date (in Russ.).
  32. Shishova N.V., Abilov A.I., Gakhova E.N., Maksudov G.Yu. Veterinarnaya patologiya, 2007, 20(1): 34-36. Available No date (in Russ.).
  33. Petrunkina A.M., Topfer Petersen E. Heterogeneous osmotic behaviour in boar sperm populations and its relevance for detection of changes in plasma membrane. Reprod. Fertil. Dev., 2000, 12: 297-305 CrossRef
  34. Thompson L.A., Brook P.F., Warren M., Barrat C., Cooke I. A morphometric comparison of the nuclear morphology of fresh and frozen-thawed human zona-bound and unbound sperm. J. Androl., 1994, 15: 337-342 CrossRef
  35. Gravance C.G., Casey M.E., Case P.J. Pre-freeze bull sperm head morphometry related with post-thaw fertility. Anim. Reprod. Sci., 2009, 114: 81-88 CrossRef
  36. Peña F.J., Saravia F., García Herreros M., Núñezmartínez I., Tapia J.A.,  Johannisson A., Wallgren M., Rodríguez-Martínez H. Identification of sperm morphometric subpopulations in two different portions of the boar ejaculate and its relation to post thaw quality. J. Androl., 2005, 26: 716-723 CrossRef
  37. García Herreros M., Barón F.J., Aparicio I.M., Santos A.J., García Marín L.J. Morphometric changes in boar spermatozoa induced by cryopreservation. Int. J. Androl., 2008, 31: 490-498 CrossRef
  38. Arruda R.P., Ball B.A., Gravance C.G., Garcia R.P., Liu I.K. Effects of extenders and cryoprotectants on stallion sperm head morphometry. Theriogenology, 2002, 58: 252-256 CrossRef
  39. Peña A.I., Lugilde L.L., Barrio M., Herradon P.G., Quintela L.A. Effects of Equex from different sources on post thaw survival, long evity and intracelular Ca2+ concentration of dog spermatozoa. Theriogenology, 2003, 59: 1725-1739 CrossRef
  40. Thomas C., Garner D., De Jarnette J., Marshall C. Fluorometric assessments of acrosomal integrity and viability in cryopreserved bovine spermatozoa. Biol. Reprod., 1997, 56: 991-998.
  41. Vinogradov V.N., Strekozov N.I., Abilov A.I. et al. Natsional'naya tekhnologiya zamorazhivaniya i ispol'zovaniya spermy plemennykh bykov-proizvoditelei [National technology of freezing and use of pedigree bull sires]. Moscow, 2009 (in Russ.).
  42. Iolchiev B.S., Bagirov V.A., Klenovitskij P.M., Kononov V.P., Nasibov Sh.N., Voevodin V.A. DostizheniyanaukiitekhnikiAPK, 2011, 9: 54-56. Available No date (in Russ.).
  43. IolchievB.S., Bagirov V.A., Klenovitskiy P.M., Kononov V.P., Tadzieva A.V. The index of dna fragmentation in sperm chromatin as a criteria to predict an individual fecundity in bulls sires. Agricultural Biology, 2012, 4: 31-35 CrossRef (in Eng.).
  44. Tadzhieva A.V., Sulima N.N. Vestnik RUDN, seriya Agronomiya i zhivotnovodstvo, 2015, 4: 89-92. Available No date (in Russ.).
  45. Boiko E.V., Koropets L.A. Vestnik Bryanskoi gosudarstvennoi sel'skokhozyaistvennoi akademii, 2015, 3-1: 4-8. Available dostupa: No date (in Russ.).
  46. Aybazov M.M., Aksenova P.V., Serdyukov I.G. Sel'skokhozyaistvennye zhivotnye, 2013, 4: 9-10. Available No date (in Russ.).
  47. Ozkavukcu S., Erdemli E., Isik A., Oztuna D., Karahuseyinoglu S. Effects of cryopreservation on sperm parameters and ultrastructural morphology of human spermatozoa. J. Assist. Reprod. Genet., 2008, 25(8): 403-411 CrossRef
  48. Hammadeh M.E., Askari A.S., Georg T., Rosenbaum P., Schmidt W. Effect of freeze-thawing procedure on chromatin stability, morphological and membrane integrity of human spermatozoa in fertile and subfertile men. Int. J. Androl., 1999, 22: 155-162 CrossRef
  49. Buhr M.M., Fiser P., Bailey J.L., Curtis E.F. Cryopreservation in different concentrations of glycerol alters boar sperm and their membranes. J. Androl., 2001, 22: 961-969 CrossRef
  50. Gilmore J.A., Liu J., Gao D.Y., Critser J.K. Determination of optimal cryoprotectants and procedures for their addition and removal from human spermatozoa. Hum. Reprod., 1997, 12: 112-118 CrossRef
  51. Chenoweth P.J. Genetic sperm defects. Theriogenology, 2005, 64: 457-468 CrossRef
  52. Dahlbom M., Andersson M., Viertula M., Alanko M. Morphometry of normal and teratozoospermic canine sperm heads using an image analyser: work in progress. Theriogenology, 1997, 48: 687-698 CrossRef
  53. Boersma A.A., Braun J., Stolla R. Influence of random factors and two different staining procedures on1 computer-assisted sperm head morphometry in bulls. Reprod. Domest. Anim., 1999, 34: 77-82 CrossRef
  54. Purwantara B., Arifiantini R.I., Riyadhi M. Sperm morphological assessments of Friesian Holstein bull semen collected from three artificial insemination centers in Indonesia. Journal of the Indonesian Tropical Animal Agriculture, 2010, 2: 89-94 CrossRef
  55. Söderquist L., Janson L., Håård M., Einarsson S. Influence of season, age, breed and some other factors on the variation in sperm morphological abnormalities in Swedish dairy AI bulls. Anim. Reprod. Sci., 1996, 44: 91-98.
  56. Padrik P., Jaakma U. Sperm morphology in Estonian Holstein dairy bulls, factors affecting it and relation to fertility. Agraarteadus, 2002, 13: 243-256. Available No date.
  57. Hallap T., Nagy S., Hllrd M., Jaakma U., Johannisson A., Rodríquez-Martínez H. Sperm chromatin stability in frozen-thawed semen is maintained over age in AI bulls. Theriogenology, 2005, 63: 1752-1763 CrossRef
  58. Makhzoomi A., Lundeheim N., Haard M., Rodríquez-Martínez H. Sperm morphology and fertility of progeny-tested AI dairy bulls in Sweden. Theriogenology, 2008, 70: 682-691 CrossRef
  59. Sarder M.J.U. Effects of age, body weight, body condition and scrotal circumference on sperm abnormalities of bulls used for artificial insemination (AI) programme in Bangladesh. University Journal of Zoology, Rajshahi University, 2008, 27: 73-78 CrossRef
  60. Benchaib M., Braun V., Lornage J., Hadj S., Salle B., Herve L., François Guérin J. Sperm DNA fragmentation decreases the pregnancy rate in an assisted reproductive technique. Hum. Reprod., 2003, 18(5): 1023-1028 CrossRef
  61. Morris I.D., Ilott S., Dixon L., Brison D.R. The spectrum of DNA damage in human sperm assessed by single cell gel electrophoresis (Comet assay) and its relationship to fertilization and embryo development. Hum. Reprod., 2002; 17: 990-998 CrossRef
  62. Tomsu M., Sharma V., Miller D. Embryo quality and IVF treatment outcomes may correlate with different sperm comet assay parameters. Hum. Reprod., 2002, 17(7): 1856-1862 CrossRef
  63. Filatov M.V., Semenova E.V., Vorob'eva O.A., Leont'eva O.A., Drobchenko E.A. Relationship between abnormal sperm chromatin packing and IVF results. Mol. Hum. Reprod., 1999, 5: 825-830 CrossRef
  64. Host E., Lindenberg S., Smidt-Jensen S. The role of DNA strand breaks in human spermatozoa used for IVF and ICSI. Acta Obstetricia et Gynecologica Scandinavica, 2000, 79: 559-563 CrossRef
  65. Larson K.L., DeJonge C.J., Barnes A.M., Jost L.K., Evenson D.P. Sperm chromatin structure assay parameters as predictors of failed pregnancy following assisted reproductive techniques. Hum. Reprod., 2000, 15(8): 1717-1722 CrossRef
  66. Galimov Sh.N., Amirova Z.K., Galimova E.F. Problemy reproduktsii, 2005, 2: 19-22. Available No date (in Russ.).
  67. Evenson D.P., Jost L.K., Corzett M., Balhorn R. Characteristics of human sperm chromatin structure following an episode of influenza and high fever: a case study. J. Androl., 2000, 21: 739-746 CrossRef
  68. Boe-Hansen G.B., Ersboll A.K., Greve T., Christensen P. Increasing storage time of extended boar semen reduces sperm DNA integrity. Theriogenology, 2005, 63: 2006-2019 CrossRef
  69. Bochenek M., Herjan T., Okólski A., Smorag Z. Sperm chromatin abnormalities after semen sexing procedure — preliminary results. Havemeyer Foundation Monograph Series, 2006, 18: 13-14..