doi: 10.15389/agrobiology.2017.2.418eng

UDC 636.4:636.084:636.087.8:579.64

Supported financially under the subsidy agreement with Ministry of Education and Science of the Russian Federation № 14.579.21.0021 dated 05.06.2014


DIETARY PROBIOTIC Lactobacillus plantarum L-211 FOR FARM ANIMALS.

V.I. Fisinin1, E.A. Artem’eva2, I.I. Chebotarev3, G.Yu. Laptev4, I.N. Nikonov4, L.A. Il’ina4, N.G. Mashentseva5, A.V. Savinov3, D.L. Klabukova5, E.A. Yildirim4, N.I. Novikov4

1Federal Scientific Center All-Russian Research and Technological Poultry Institute RAS, Federal Agency of Scientific Organizations, 10, ul. Ptitsegradskaya, Sergiev Posad, Moscow Province, 141315 Russia, e-mail;
2L.K. Ernst All-Russian Research Institute of Animal Husbandry, Federal Agency of Scientific Organizations, 60, pos. Dubrovitsy, Podolsk District, Moscow Province, 142132 Russia, e-mail;
3JSC «Bioreactor», 18, ul. Komarova, Shchelkovo, Moscow Province, 114142 Russia;
4JSC «Biotrof», Kolpino, St. Petersburg, 192288 Russia, e-mail (corresponding author);
5Moscow State University of Food Production, 11, Volokolamskoe sh., Moscow, 125080 Russia

The authors declare no conflict of interests

Fisinin V.I.

Received October 3, 2016


The lack of lysine in the diet of pigs negatively affects appetite, weight gain, metabolism and immunity of animals. Most feeds for pigs are deficient in lysine. Synthetic amino acids, as feed additives, make feeds significantly more expensive. In this regards, the biologcs based on microbial producers able to synthetize lysine in the gastrointestinal tract of animals are promising. However, common producers of lysine, Brevibacterium lactofermentum, Escherichia coli and the genus Corynebacterium, are conditionally pathogenic as a causal agents of opportunistic infections. In the present study, we first examined the changes in intestinal bacterial community and the productive performance in Large White pigs («Novgorod bacon», Novgorod Province) under the influence a lysine producing strain Lactobacillus plantarum L-211 (JSC «Bioreactor», Moscow). Taxonomic composition of microorganisms was determined by T-RFLP (terminal restriction fragment length polymorphism) analysis. For surveillance we used two groups of pigs from 28- to 84-day age, fed with the basic diet (n = 715, group 1, control) and the same diet supplemented with L. plantarum L-211 at the dose not less than 109 CFU per animal added to water (n = 657, group 2). Microbial community in the pigs’ large intestine was taxonomically divers and included a number of unidentified phylotypes. Here, the predominating bacteria were representatives of the phylum Firmicutes, including mainly Clostridia possessing cellulolytic and amylolytic properties, as well as the members of order Negativicutes able to ferment acids. The phyla Proteobacteria, Bacteroidetes, Actinobacteria and Fusobacteria were less abundant. The counts of genus Lactobacillus was lower than previously assumed, moreover, there was a complete absence of enterococci and bifidobacteria, which are usually attributed to the autochthonous microbiota of the large intestine of animals and birds. Lysine synthesizing strain L. plantarum L-211 had a high probiotic effect resulting in a significant increase in the counts of genera Lactobacillus (2.94-fold, P < 0.01) and Bacillus (3.29-fold, P < 0.01), of phylum Bacteroidetes (5.29-fold, P < 0.01), and class Clostridia (2.05-fold, P < 0.01), whereas the proportions of pathogens from Staphylococcus genus and Сampylobacteriaceae family werebelow the T-RFLP sensitivity, and the family Pasteurellaceae decreased in number 1.41-fold (P < 0.05). Both the survival and the average daily weight gain (P < 0.05) in pigs, as influenced by the probiotic strain L. plantarum L-211, were higher. L. plantarum L-211 also improved feed conversion efficiency as compared to the control pigs.

Keywords: lysine, intestinal microflora, pigs, bacterial community, T-RFLP, probiotic, Lactobacillus plantarum, productivity, pigs’ survival, feed conversion.


Full article (Rus)

Full text (Eng)



  1. Georgievskii V.I. Fiziologiya sel'skokhozyaistvennykh zhivotnykh [Physiology of farm animals]. Moscow, 1990 (in Russ.).
  2. Ernst L.K., Laptev G.Yu. Optimizatsiya mikroflory zheludochno-kishechnogo trakta sel'skokhozyaistvennykh zhivotnykh [Gut microflora optimization in farm animals]. St. Petersburg, 2011 (in Russ.).
  3. Hulshof T.G., van der Poel A.F., Hendriks W.H., Bikker P. Amino acid utilization and body composition of growing pigs fed processed soybean meal or rapeseed meal with or without amino acid supplementation. Animal, 2016, 5: 1-11 CrossRef
  4. Gallo L., Dalla Bona M., Carraro L., Cecchinato A., Carnier P., Schi
    avon S. Effect of progressive reduction in crude protein and lysine of heavy pigs diets on some technological properties of green hams destined for PDO dry-cured ham production. Meat Sci., 2016, 121: 135-140 CrossRef
  5. Craig A., Henry W., Magowan E. Effect of phase feeding and valine-to-lysine ratio during lactation on sow and piglet performance. J. Anim. Sci., 2016, 94(9): 3835-3843 CrossRef
  6. Normy i ratsiony kormleniya sel'skokhozyaistvennykh zhivotnykh. Spravochnoe posobie /Pod redaktsiei A.P. Kalashnikova, V.I. Fisinina, V.V. Shcheglova, N.I. Kleimenova [Norms and rations of feeding of farm animals. Reference Manual. A.P. Kalashnikov, V.I. Fisinin, V.V. Shcheglov, N.I. Klemenov (eds.)]. Moscow, 2003 (in Russ.).
  7. Hulshof T.G., Poel A.F., Hendriks W.H., Bikker P. Amino acid utilization and body composition of growing pigs fed processed soybean meal or rapeseed meal with or without amino acid supplementation. Animal, 2016, Dec 5: 1-11 CrossRef
  8. Fisinin V.I., Chebotarev I.I., Nikonov I.N., Il'ina L.A., Laptev G.Yu., Mashentseva N.G. Biofarmatsevticheskii zhurnal, 2014, 6(6): 60-64 (in Russ.).
  9. Il'ina L.A., Iyldyrym E.A., Filippova V.A., Nikonov I.N., Laptev G.Yu., Novikova N.I., Fisinin V.I., Chebotarev I.I., Mashentseva N.G., Klabukova D.L. Biofarmatsevticheskii zhurnal, 2015, 7(6): 11-15 (in Russ.).
  10. Lal P.B., Schneider B.L., Vu K., Reitzer L. The redundant aminotransferases in lysine and arginine synthesis and the extent of aminotransferase redundancy in Escherichia coli. Mol. Microbiol., 2014, 94(4): 843-856 CrossRef
  11. Zhou L.B., Zeng A.P. Exploring lysine riboswitch for metabolic flux control and improvement of L-lysine synthesis in Corynebacterium glutamicum. ACS Synth. Biol., 2015, 4(6): 729-734 CrossRef
  12. Xing Y., Wang S., Fan J., Oso A.O., Kim S.W., Xiao D., Yang T., Liu G., Jiang G., Li Z., Li L., Zhang B. Effects of dietary supplementation with lysine-yielding Bacillus subtilis on gut morphology, cecal microflora, and intestinal immune response of Linwu ducks. J. Anim. Sci., 2015, 93(7): 3449-3457 CrossRef
  13. Odunfa S.A., Adeniran S.A., Teniola O.D., Nordstrom J. Evaluation of lysine and methionine production in some Lactobacilli and yeasts from Ogi. Int. J. Food Microbiol., 2001, 63(1-2): 159-163.
  14. Delia E., Tafaj M., Minnerin K. Efficiency of probiotics in farm animals. In: Probiotic in animals. E. Rigobelo (ed.). InTech., 2012. V. 2: 247-272 CrossRef
  15. Li P., Li X., Gu Q., Lou X.Y., Zhang X.M., Song D.F., Zhang C. Comparative genomic analysis of Lactobacillus plantarum ZJ316 reveals its genetic adaptation and potential probiotic profiles. J. Zhejiang Univ. Sci. B, 2016, 17(8): 569-579 CrossRef
  16. Seo B.J., Mun M.R., Rejish Kumar V.J., Kim C.-J., Lee I., Chang Y.-H., Park Y.H. Bile tolerant Lactobacillus reuteri isolated from pig feces inhibits enteric bacterial pathogens and porcine rotavirus. Vet. Res. Commun., 2010, 34(4): 323-333 CrossRef
  17. Pajarillo E.A., Chae J.P., Balolong M.P., Kim H.B., Seo K.S., Kang D.-K. Characterization of the fecal microbial communities of Duroc pigs using 16S rRNA gene pyrosequencing. Asian-Australas. J. Anim. Sci., 2015, 28: 584-591 CrossRef
  18. Vondruskova H., Slamova R., Trckova M., Zraly Z., Pavlik I. Alternatives to antibiotic growth promoters in prevention of diarrhoea in weaned piglets: A review. Veterinarni Medicina, 2010, 55(5): 199-224.  
  19. Dicksved J., Floistrup H., Bergstrom A., Rosenquist M., Pershagen G., Scheynius A., Roos S., Alm J.S., Engstrand L., Braun-Fahrlander C., von Mutius E., Jansson J.K. Molecular fingerprinting of the fecal microbiota of children raised according to different lifestyles. Appl. Environ. Microbiol., 2007, 73: 2284-2289 CrossRef
  20. Davis E., Rehberger J., King M., Brown D.C., Maxwell C.V., Rehberger T. Characterization of gastrointestinal microbial and immune populations post-weaning in conventionally-reared and segregated early weaned pigs (Proc. 11th Int. Symp. on Digestive Physiology of Pigs, Costa Daurada, 2009). Livestock Sci., 2010, 133: 92-94 CrossRef
  21. Chae J.P., Pajarillo E.A., Oh J.K., Kim H., Kang D.K. Revealing the combined effects of lactulose and probiotic enterococci on the swine faecal microbiota using 454 pyrosequencing. Microbial Biotechnology, 2016, 9: 486-495 CrossRef
  22. Dicksved J., Jansson J.K., Lindberg J.E. Fecal microbiome of growing pigs fed a cereal based diet including chicory (Cichorium intybus L.) or ribwort (Plantago lanceolata L.) forage. Journal of Animal Science and Biotechnology, 2015, 6: 53 CrossRef
  23. Laptev G.Yu., Novikova N.I., Il'ina L.A., Iyldyrym E.A., Nagornova K.V., Dumova V.A., Soldatova V.V., Bol'shakov V.N., Gorfunkel' E.P., Dubrovina E.G., Sokolova O.N., Nikonov I.N., Lebedev A.A. Normy soderzhaniya mikroflory v rubtse krupnogo rogatogo skota [Norms of rumen microflora in cattle]. St. Petersburg, 2014 (in Russ.).
  24. Maniatis T., Fritsch E.F., Sambrook J. Molecular cloning: A laboratory manual. Cold Spring Harbor, NY, 1982.
  25. Tarakanov B.V. Metody issledovaniya mikroflory pishchevaritel'nogo trakta sel'skokhozyaistvennykh zhivotnykh i ptitsy [Methods for studying the microflora of the digestive tract in agricultural animals and poultry]. Moscow, 2006 (in Russ.).
  26. Nocek J.E. Bovine acidosis: implications on laminitis. J. Dairy Sci., 1997, 80: 1005-1028 CrossRef
  27. Encyclopedia of metagenomics: environmental metagenomics. S.K. Highlander, F. Rodriguez-Valera, B.A. White (eds.). Springer US, NY, 2015.
  28. Kraler M., Ghanbari M., Domig K.J., Schedle K., Kneifel W. The intestinal microbiota of piglets fed with wheat bran variants as characterised by 16S rRNA next-generation amplicon sequencing. Arch. Anim. Nutr., 2016, 70(3): 173-189 CrossRef
  29. Kucan M., Gobin I., Markov K., Jurcic Momcilovic D., Frece J. Testing the adhesion and colonization ability of Lactobacillus plantarum strain S1 to the mice intestinal epithelium. International Journal of Sanitary Engineering Research, 2012, 6(1): 25-30.