doi: 10.15389/agrobiology.2017.2.382eng

UDC 636.5.033:636.084:636.087.8:579.64

Supported financially under the subsidy agreement with Ministry of Education and Science of the Russian Federation № 14.579.21.0021 dated 05.06.2014



V.I. Fisinin1, E.N. Andrianova1, I.I. Chebotarev2, G.Yu. Laptev3,
I.N. Nikonov3, L.A. Il’ina3, A.V. Savinov2, N.G. Mashentseva4,
D.L. Klabukova4, E.A. Yildirim3, N.I. Novikova3

1Federal Scientific Center All-Russian Research and Technological Poultry Institute RAS, Federal Agency of Scientific Organizations,10, ul. Ptitsegradskaya, Sergiev Posad, Moscow Province, 141311 Russia, e-mail,;
2JSC «Bioreactor», 18, ul. Komarova, Shchelkovo, Moscow Province, 114142 Russia;
3JSC «Biotrof», Kolpino, St. Petersburg, 192288 Russia, e-mail (corresponding author);
4Moscow State University of Food Production, 11, Volokolamskoe sh., Moscow, 125080 Russia

The authors declare no conflict of interests

Fisinin V.I.

Received October 3, 2016


Lysine is an essential limiting amino acid in chick feeding. Its deficiency in feeds, especially of wheat-barley or corn-sunflower type, can reach 15-20 %. Dietary synthetic amino acids may negatively influence productivity due to imbalances caused by rapid amino acids entry into blood. This study continues a series of our experiments aimed at determining the efficiency of dietary synthetic lysine replacement by the microorganisms that synthesize L-lysine. Previous studies have shown a high positive effect of lysine producing Escherichia coli (Prolizer-BioR probiotic; JSC «Bioreactor», Moscow), however, seeking for similar producers among non-pathogenic microorganisms remains important. In this paper we present the findings in the support of Lactobacillus plantarum L-211 probiotic (JSC «Bioreactor», Moscow) ability to optimize the gut microflora in view to increase the productive performance in poultry. Using the T-RFLP (terminal restriction fragment length polymorphism), we compared the cecal bacterial community in four groups of Cobb 500 broiler chickens at 35 days of age. The diet in group 1 (control) was a balanced combined feed. The broilers of groups 2, 3 and 4 were fed with dietary domestic probiotics containing lysine-producing Lactobacillus plantarum L-211, L. plantarum which does not produce lysine, or Bacillus subtilis (a daily rate of 1 ml for lactobacilli and 2 ml for bacilli). The concertation of all live bacteria was 100 million CFU/ml. Lysine producing L. plantarum L-211 increased the level of lactobacilli by 3.88 times (P < 0.005), of cellulolytic and amylolytic Clostridia by 1.13 times, and of acid utilizing Negativicutes by 1.36 times (P < 0.05), whereas, on the contrary, reduced the portion of pathogenic peptococci by 1.35 times (P < 0.05), staphylococci by 1.46 times and enterobacteria by 2.33 times (P < 0.005). However, L. plantarum L-211, unlike L. plantarum or B. subtilis, did not affect the Fusobacteria or Enterobacteriaceae counts. Also, L. plantarum L-211 was not effective against pasteurella and actinomycetes which, on the contrary, increased in number 1.33- and 2.75-fold (P < 0.005) as compared to the control. The lysine-producing probiotic strain resulted in the highest average live weight in broilers at day 35 and the highest average daily weigh gain (5.01 % and 5.14 %, respectively). L. plantarum L-211 also led to the lowest availability of lysine in the diet.

Keywords: lysine, gut microflora, broilers, bacterial community, T-RFLP, probiotics, Lactobacillus plantarum, productivity, broiler chicken survival rates, feed conversion ratio.


Full article (Rus)

Full text (Eng)



  1. Normy i ratsiony kormleniya sel'skokhozyaistvennykh zhivotnykh. Spravochnoe posobie /Pod redaktsiei A.P. Kalashnikova, V.I. Fisinina, V.V. Shcheglova, N.I. Kleimenova [Norms and rations of feeding of farm animals. Reference Manual. A.P. Kalashnikov, V.I. Fisinin, V.V. Shcheglov, N.I. Kleimenov (eds.)]. Moscow, 2003 (in Russ.).   
  2. Panda A.K., Rao S.V., Raju M.V., Niranjan M., Reddy M.R. Effect of nutrient density on production performance, egg quality and humoral immune response of brown laying (Dahlem Red) hens in the tropics. Trop. Anim. Health Prod., 2012, 44(2): 293-299 CrossRef
  3. Ospina-Rojas I.C., Murakami A.E., Eyng C., Nunes R.V., Duarte C.R., Vargas M.D. Commercially available amino acid supplementation of low-protein diets for broiler chickens with different ratios of digestible glycine + serine:lysine. Poultry Sci., 2012, 91(12): 3148-3155 CrossRef
  4. Wecke C., Liebert F. Improving the reliability of optimal in-feed amino acid ratios based on individual amino acid efficiency data from N balance studies in growing chicken. Animals (Basel), 2013, 3(3): 558-573 CrossRef
  5. Alhotan R.A., Pesti G.M. Quantitative estimates of the optimal balance between digestible lysine and the true protein contents of broiler feeds. Brit. Poultry Sci., 2016, 57(4): 538-550 CrossRef
  6. Kabisov R., Tsugkiev B., Khoziev A. Ptitsevodstvo, 2010, 5: 40-41 (in Russ.). 
  7. Sakomura N.K., Ekmay R.D., Mei S.J., Coon C.N. Lysine, methionine, phenylalanine, arginine, valine, isoleucine, leucine, and threonine maintenance requirements of broiler breeders. Poultry Sci., 2015, 94(11): 2715-2721 CrossRef
  8. Chebotarev I.I., Ernst L.K., Samuilenko A.Ya., Fisinin V.I., Panin A.N., Laptev G.Yu., Shkol'nikov E.E. Shtamm Escherichia coli — produtsent lizina, sposob polucheniya kormovoi dobavki, soderzhashchei dannyi shtamm, kompozitsiya, poluchennaya etim sposobom, i sposob kormleniya monogastrichnykh zhivotnykh i ptits. Patent RU 2 347 807 C1 [Escherichia coli strain, the lysine producer, a method for producing a feed additive containing the strain, a composition obtained by this method, and a method for feeding monogastric animals and birds. Patent RU 2 347 807 C1]. Appl. December 13, 2007. Publ. February 27, 2009, Bul. № 6 (in Russ.). 
  9. Livshits V.A., Doroshenko V.G., Mashko S.V., Akhverdyan V.Z., Kozlov Yu.I. Shtamm Escherichia coli — produtsent aminokisloty (varianty) i sposob polucheniya aminokislot (varianty). Patent RU 2212447 C2 [Escherichia coli strain, the amino acid producer (variants), and a method for producing amino acids (variants). Patent RU 2212447 C2]. Appl. April 26, 2000. Publ. September 20, 2003 (in Russ.). 
  10. Ernst L.K., Laptev G.Yu. Ispol'zovanie rekombinantnykh i nerekombinantnykh mikroorganizmov dlya optimizatsii mikroflory zheludochno-kishechnogo trakta sel'skokhozyaistvennykh zhivotnykh [Recombinant and non-recombinant microorganisms for gut microbiota optimization]. Moscow, 2002 (in Russ.). 
  11. Ernst L.K., Samuilenko A.Ya. Enterobakterii v zhivotnovodstve [Enterobacteria in animal husbandry]. Moscow, 2011 (in Russ.). 
  12. Tarakanov B.V. Metody issledovaniya mikroflory pishchevaritel'nogo trakta sel'skokhozyaistvennykh zhivotnykh i ptitsy [Methods for studying the microflora of the digestive tract in agricultural animals and poultry]. Moscow, 2006 (in Russ.). 
  13. Chen Y., Sun J., Liao X.P., Shao Y., Li L., Fang L.X., Liu Y.H. Impact of enrofloxacin and florfenicol therapy on the spread of OqxAB gene and intestinal microbiota in chickens. Vet. Microbiol., 2016, 192: 1-9 CrossRef
  14. Fisinin V.I., Chebotarev I.I., Nikonov I.N., Il'ina L.A., Laptev G.Yu., Mashentseva N.G. Biofarmatsevticheskii zhurnal, 2014, 6(6): 60-64 (in Russ.). 
  15. Laptev G.Yu., Novikova N.I., Il'ina L.A., Iyldyrym E.A., Nagornova K.V., Dumova V.A., Soldatova V.V., Bol'shakov V.N., Gorfunkel' E.P., Dubrovi na E.G., Sokolova O.N., Nikonov I.N., Lebedev A.A. Normy soderzhaniya mikroflory v rubtse krupnogo rogatogo skota [Norms of rumen microflora in cattle]. St. Petersburg, 2014 (in Russ.). 
  16. Metodika provedeniya nauchnykh i proizvodstvennykh issledovanii po kormleniyu sel'skokhozyaistvennoi ptitsy. Molekulyarno-geneticheskie metody opredeleniya mikroflory kishechnika /Pod redaktsiei V.I. Fisinina [Methods of laboratory and field study on feeding of poultry. Molecular genetic methods for determining intestinal microflora. V.I. Fisinin (ed.)]. Sergiev Posad, 2013 (in Russ.).  
  17. Bryukhanov A.L., Rybak K.V., Netrusov A.I. Molekulyarnaya mikrobiologiya [Molecular microbiology]. Moscow, 2012 (in Russ.). 
  18. Maniatis T., Fritsch E.F., Sambrook J. Molecular cloning: A laboratory manual. Cold Spring Harbor, NY, 1982.
  19. McCartney A.L. Application of molecular biological methods for studying probiotics and the gut flora. Br. J. Nutr., 2002, 88: 29-37.
  20. Kitts C.L. Terminal restriction fragment patterns: a tool for comparing microbial communities and assessing community dynamics. Current Issues in Intestinal Microbiology, 2001, 2: 17-25.
  21. Il’ina L.A., Yildirim E.A.,Nikonov I.N., Filippova V.A., Laptev G.Yu., Novikova N.I., GrozinaA.A., Lenkova T.N., Manukyan V.A., Fisinin V.I., Egorov I.A.Taxons of chicken cecum microbiom are abundant, and influenced by the combined feed composition and decreased metabolizable energy. Agricultural Biology, 2015, 50(6): 817-824 CrossRef (in Engl.).
  22. Kucan M., Gobin I., Markov K., Jurcic Momcilovic D., Frece J. Testing the adhesion and colonization ability of Lactobacillus plantarum strain S1 to the mice intestinal epithelium. International Journal of Sanitary Engineering Research, 2012, 6(1): 25-30.
  23. Ouwehand A.C., Salminen S., Isolaury E. Probiotics: an overview of beneficial effects. Antonie Leewenhoek, 2002, 82: 279-289.
  24. Takahashi M., Kametaka M., Mitsuoka T. Influence of diets low in protein or lysine on the intestinal flora of chicks with reference to cecal contents. J. Nutr. Sci. Vitaminol., 1982, 28(5): 501-510.