doi: 10.15389/agrobiology.2017.2.251eng

UDC 636.32/.38:575.113:577.2.08:51-76

Supported financially by Russian Science Foundation, project № 14-36-00039



T.E. Deniskova1, A.V. Dotsev1, V.A. Bagirov1, K. Wimmers2, H. Reyer2,
G. Brem3, N.A. Zinovieva1

1L.K. Ernst All-Russian Research Institute of Animal Husbandry, Federal Agency of Scientific Organizations, 60, pos. Dubrovitsy, Podolsk District, Moscow Province, 142132 Russia, e-mail, (corresponding author),;
2Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Mecklenburg-Vorpommern, 18196 Dummerstorf, Germany, e-mail,;
3Institut für Tierzucht und Genetik, University of Veterinary Medicine (VMU), Veterinärplatz, A-1210, Vienna, Austria, e-mail

The authors declare no conflict of interests


Deniskova T.E.

Reyer H.

Dotsev A.V.

Brem G.

Bagirov V.A.

Zinovieva N.A.

Wimmers K.


Received September 26, 2016


Introgression of wild and domestic species is regarded as a promising way to improve genetic diversity in populations of farm animals. The aim of our study was to investigate the influence of introgression of the wild species (argali) on genetic diversity of interspecific hybrids with domestic sheep using STR and SNP markers. Samples included original parental forms: Romanov sheep (ROM, n = 35), representing the «domestic» form (Ovis aries), and argali (OAM, n = 10), characterizing the «wild» form (O. ammon polii), male hybrid F1, obtained by surgical insemination of Romanov ewe by argali sperm (F1, n = 1), and back crosses obtained by crossing Romanov ewes with hybrid F1 ram (BC1, n = 38) and hybrid BC1 rams (BC2, n = 14). The analysis of 11 STR loci (BLT001B, CSRD247, FCB20, CSAP36, MAF65, McM147, OarCP49, D5S2, HSC, BMS2213 and INRA23) was carried out on the ABI PRISM 3130xl genetic analyzer. For SNP genotyping we used Ovine SNP50K BeadChip. After quality control, 9 STR loci and 8591 SNPs were left for the analysis. Statistical calculations were performed in GenAIEx 6.5, PLINK v1.07, HP-Rare 1.1, GENETIX 4.05 and STRUCTURE 2.3.4. Regardless the type of DNA marker, ROM, compared with OAM, was characterized by a higher level of genetic diversity, assessed by observed heterozygosity (Ho) and allelic richness (Ar). Hybridization resulted in an increase in this parameter in the F1 hybrid. In groups BC1 and BC2, the Ho values, calculated per STR and SNP, were higher than similar in the parental forms. In BC1 and BC2 groups the Ar values, estimated by SNP-markers, were reducing in comparison with F1 and were intermediate in comparison with the same in the parental forms. The changes in the Ar values, based on STR data, had the character of a trend in groups BC1 and BC2. Principal component analysis (PCA), performed by using SNP-markers, showed a more objective distribution pattern of the studied animals according to their origin in the coordinates space. In case of SNP data, PC1 was sufficient for clearly differentiation of groups OAM, ROM, F1 and BC1 + BC2. In summary, the first two components (PC1 and PC2) were responsible for 25.87 % of the SNP variability and for only 12.46 % of the STR variability. Principal component 3 (PC3), which was responsible for 6.16 % of SNP variability, made it possible to differentiate BC1 and BC2 groups, whereas at the application of STR these groups were localized as a common cluster.  The results of STRUCTURE analysis showed that association of the investigated individuals into clusters, based on STR-profiles, did not match their origin, while the formation of clusters by SNP-markers was corresponded to the actual origin of animals. We found that both types of tested DNA markers were suitable for detecting changes in genetic diversity through hybrids generation. Nevertheless, a significant advantage of using multiple SNP-markers for the differentiation of hybrids from the parental forms was shown.

Keywords: interspecific hybrids, introgression, genetic diversity, SNP, STR, genus Ovis.


Full article (Rus)

Full text (Eng)



  1. Harrison R.G. Hybrid zones: windows on evolutionary process. Oxford Surveys in Evolutionary Biology, 1990, 7: 69-128.
  2. Arnold M.L. Evolution through genetic exchange. Oxford University Press, Oxford, UK, 2006.
  3. Martinsen G.D., Whitham T.G., Turek R.J., Keim P. Hybrid populations selectively filter gene introgression between species. Evolution, 2001, 55(7): 1325-1335 CrossRef
  4. Schwenk K., Brede N., Streit B. Introduction. Extent, processes and evolutionary impact of interspecific hybridization in animals. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363: 2805-2811 CrossRef
  5. Reza M.Md.T., Lee S.-J., Singh N.K. Interspecies hybridization in animals: An overview. Annals of Animal Resource Sciences, 2012, 23(2): 149-163 CrossRef
  6. Anderson E., Hubricht L. Hybridization in tradescantia. III. The evidence for introgressive hybridization. Am. J. Bot., 1938, 25(6): 396-402 CrossRef
  7. Anderson E. Introgressive hybridization. Wiley & Sons, NY, 1949.
  8. Harrison R.G., Larson E.L. Hybridization, introgression, and the nature of species boundaries. J. Hered., 2014, 05(S1): 795-809 CrossRef
  9. Falniowski A. Introgression: in a contact zone of two closely related species? Not necessarily. International Journal of Pure and Applied Zoology, 2016, 4(3): 289-290.
  10. Katoh M., Ribi G. Genetic evidence for natural hybridization and apparent introgression between freshwater snail species (Viviparusater and V. contectus). J. Evolution. Biol., 1996, 9: 67-82.
  11. Randi E. Detecting hybridization between wild species and their domesticated relatives. Mol. Ecol., 2008, 17(1): 285-293 CrossRef
  12. Nasibov Sh.N., Bagirov V.A., Klenovitskij P.M., Iolchiev B.S., Zinov'eva N.A., Voevodin V.A., Amirshoev F.S. Dostizheniya nauki i tekhniki APK, 2010, 8: 59-62. Available No date (in Russ.).
  13. Anderson G.B. Interspecific pregnancy: barriers and prospects. Biol. Reprod., 1988, 38: 1-15 CrossRef
  14. Nahar T.N., Islam M., Hasnath M.A. A comparative study on the performances of F1 crossbred cows under rural conditions. Asian-Australas. J. Anim. Sci., 1992, 5(3): 435-438 CrossRef
  15. Kochhar H.P.S., Appa Rao K.B.C., Luciano A.M., Totey S.M., Gandolfi F., Basrur P.K., King W.A. In vitro production of cattle-water buffalo (Bos taurus-Bubalus bubalis) hybrid embryos. Zygote, 2002, 10: 155-162 CrossRef
  16. Lanza R.P., Cibelli J.B., Diaz F., Moraes C.T., Farin P.W., Farin C.E., Hammer C.J., West M.D., Damiani P. Cloning of an endangered species (Bos gaurus) using interspecies nuclear transfer. Cloning, 2000, 2: 79-90 CrossRef
  17. Loi P., Modlinski J.A., Ptak G. Interspecies somatic cell nuclear transfer: a salvage tool seeking first aid. Theriogenology, 2011, 76: 217-228 CrossRef
  18. Bagirov V.A., Ernst L.K., Nasibov S.N., Klenovitskiy P.M., Iolchiev B.C., Zinov'eva N.A. Dostizheniya nauki i tekhniki APK, 2009, 7: 54-56. Available No date (in Russ.).
  19. Bagirov V.A., Klenovitskii P.M., Iolchiev B.S. Sbornik nauchnykh trudov Vserossiiskogo nauchno-issledovatel'skogo instituta ovtsevodstva i kozovodstva, 2012, 2(1): 15-25. Available No date (in Russ.).
  20. Mavrogenis A.P., Herzog A. Interspecific hybridization of the Cyprus mouflon (Agrinon) with domestic sheep. Animal Genetic Resources Information (FAO/UNEP), 1990, 7: 24-29
  21. Loi P., Ptak G., Fulka J.J., Cappai P., Clinton M. Genetic rescue of an endangered mammal by cross-species nuclear transfer using post-mortem somatic cells. Nat. Biotechnol., 2001, 19: 962-964.
  22. Schröder O., Lieckfeldt D., Lutz W., Rudloff C., Frölich K., Ludwig A. Limited hybridization between domestic sheep and the European mouflon in Western Germany. Eur. J. Wildlife Res., 2016, 62(3): 307-314 CrossRef
  23. Butarin N.S. Porody sel'skokhozyaistvennykh zhivotnykh, vyvedennye v Kazakhstane [Farm animal breeds of Kazahkstan]. Alma-Ata, 1960 (in Russ.).
  24. Alves P.C., Melo-Ferreira J., Freitas H., Boursot P. The ubiquitous mountain hare mitochondria: multiple introgressive hybridization in hares, genus Lepus. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363: 2831-2839 CrossRef
  25. Vigfúsdóttir F., Pálsson S., Ingólfsson A. Hybridization of glaucous gull (Larus hyperboreus) and herring gull (Larus argentatus) in Iceland: mitochondrial and microsatellite data. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363: 2851-2860 CrossRef
  26. Cabria M.T., Michaux J.R., Gómez-Moliner B.J., Skumatov D., Mar-
    an T., Fournier P., López de Luzuriaga J., Zardoya R. Bayesian analysis of hybridization and introgression between the endangered European mink (Mustela lutreola) and the polecat (Mustela putorius). Mol. Ecol., 2001, 20(6): 1176-1190 CrossRef
  27. Tautz D., Renz M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res., 1984, 12: 4127-4138 CrossRef
  28. Lecis R., Pierpaoli M., Birò Z. S., Szemethy L., Ragni B., Vercillo F., Randi E. Bayesian analyses of admixture in wild and domestic cats (Felis silvestris) using linked microsatellite loci. Mol. Ecol., 2006, 15(1): 119-131 CrossRef
  29. Vähä J.P., Primmer C.R. Efficiency of model-based Bayesian methods for detecting hybrid individuals under different hybridization scenarios and with different numbers of loci. Mol. Ecol., 2006, 15: 63-72 CrossRef
  30. Verardi A., Lucchini V., Randi E. Detecting introgressive hybridization between free-ranging domestic dogs and wild wolves (Canis lupus) by admixture linkage disequilibrium analysis. Mol. Ecol., 2006, 15(10): 2845-2855 CrossRef
  31. Oliveira R., Randi E., Mattucci F., Kurushima J.D., Lyons L.A., Alv-
    es P.C. Toward a genome-wide approach for detecting hybrids: informative SNPs to detect introgression between domestic cats and European wildcats (Felis silvestris). Heredity, 2015, 115: 195-205 CrossRef
  32. Kharzinova V.R., Dotsev A.V., Kramarenko A.S., Layshev K.A., Romanenko T.M., Solovieva A.D., Deniskova T.E., Kostunina O.V., Brem G., Zinovieva N.A. Study of the allele pool and the degree of genetic introgression of semi-domesticated and wild populations of reindeer (Rangifer tarandus L., 1758) using microsatellites Russia. AgriculturalBiology, 2016, 51(6): 811-823 CrossRef eng (in Engl.).
  33. Sovic M.G., Kubatko L.S., Fuerst P.A. The effects of locus number, genetic divergence, and genotyping error on the utility of dominant markers for hybrid identification. Ecology and Evolution, 2014, 4(4): 462-473 CrossRef
  34. Morin P.A., Luikart G., Wayne R.K. SNPs in ecology, evolution and conservation. Trends in Ecology and Evolution, 2004, 19(4): 208-216 CrossRef
  35. Kalinowski S.T. How to use SNPs and other diagnostic diallelic genetic markers to identify the species composition of multi-species hybrids. Conservation Genetics Resources, 2010, 2: 63-66 CrossRef
  36. Zinovieva N.A., Dotsev A.V., Sermyagin A.A., Wimmers K., Rayer H., Sölkner J., Deniskova T.E., Brem G. Study of genetic diversity and population structure of five Russian cattle breeds using whole-genome SNP analysis. AgriculturalBiology, 2016, 51(6): 788-800 CrossRef (in Engl.).
  37. Finger A.J., Stephens M.R., Clipperton N.W., May B. Six diagnostic single nucleotide polymorphism markers for detecting introgression between cutthroat and rainbow trouts. Mol. Ecol. Resour., 2009, 9(3): 759-763 CrossRef
  38. Stephens M.R., Clipperton N.W., May B. Subspecies-informative SNP assays for evaluating introgression between native golden trout and introduced rainbow trout. Mol. Ecol. Resour., 2009, 9(1): 339-343 CrossRef
  39. Goedbloed D.J., van Hooft P., Megens H.-J., Langenbeck K., Lutz W., Crooijmans R. PMA, van Wieren S.E., Ydenberg R.C., Prins H.H.T. Reintroductions and genetic introgression from domestic pigs have shaped the genetic population structure of Northwest European wild boar. BMC Genetics, 2013, 14: 43 CrossRef
  40. Purcell S., Neale B., Todd-Brown K. Thomas L., Ferreira M.A.R., Bender D., Maller J., Sklar P., de Bakker P.I.W., Daly M.J., Sham P.C. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet., 2007, 81: 559-575 CrossRef
  41. Weir B.S., Cockerham C.C. Estimating F-Statistics for the analysis of population structure. Evolution, 1984, 38(6): 1358-1370 CrossRef
  42. Nei M. Genetic distance between populations. American Naturalist, 1972, 106: 283-392 CrossRef
  43. Peakall R., Smouse P.E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research — an update. Bioinformatics, 2012, 28: 2537-2539 CrossRef
  44. Belkhir K., Borsa P., Chikhi L., Raufaste N., Bonhomme F. GENETIX 4.05, Population Genetics Software for Windows TM. Université de Montpellier II, Montpellier, France, 2004.
  45. Kalinowski S.T. HP RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol. Ecol. Notes, 2005, 5: 187-189 CrossRef
  46. R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2009. ISBN 3-900051-07-0. Available No date.
  47. Pritchard J.K., Stephens M., Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155: 945-959.
  48. Anderson E.C., Thompson E.A. A model-based method for identifying species hybrids using multilocus genetic data. Genetics, 2002, 160: 1217-1229.
  49. Corander J., Marttinen P. Bayesian identification of admixture events using multilocus molecular markers. Mol. Ecol., 2006, 15(10): 2833-2843 CrossRef