doi: 10.15389/agrobiology.2016.2.204eng

UDC 579.64:57.088

 

ALFP-FINGERPRINTING FOR PASPORTIZATION OF Aspergillus nige L-4, THE CITRIC ACID COMMERCIAL PRODUCER

N.Yu. Sharova1, V.I. Safronova2

1All-Russian Research Institute for Food Additives, Federal Agency of Scientific Organizations,
55, Liteinyi prosp., St. Petersburg, 191014 Russia,
e-mail natalya_sharova1@mail.ru;
2All-Russian Research Institute for Agricultural Microbiology, Federal Agency of Scientific Organizations,
3, sh. Podbel’skogo, St. Petersburg, 196608 Russia

Received January 11, 2016

 

Citric acid plays an important role in cellular respiration, and participates in oxidation processes as a natural antioxidant and synergist antioxidant, inhibiting plant oxidoreductase, together with ascorbic acid. Citric acid is effective against east and bacterial pathogens, and can be used in ensilaging. Citric acid is an antimicrobial agent alternative to fodder antibiotics prohibited in European countries. It is metabolized in plants, animals and humans with no adverse effect. Aspergillus niger is the citric acid common producer. So far as cultural and morphological features are not enough to confirm strain authenticity essential for effective commercial product manufacturing, we used genetic pasportization of the strain. Note, in 2015 in wide range genetic study of Aspergillus flavus diversity the specific ALFP patterns were found though their practical aspects were not discussed (D. Singh et al., 2015). Herein, we studies osmophilic commercial strain Aspergillus niger L-4, the citric acid producer derived due to chemical and UV mutagenesis and spontaneous mutations, using optimized AFLP-fingerpinting with 12 different primers. Specific AFLP patterns were obtained for Aspergillus niger L-4 authentification. Mse_cc GATGAGTCCTGAGTAACC and Eco_ас (FAM) GACTGCGTACCAATTAC primers were shown to be optimal providing maximum number of DNA fragments in the range of 33.68 to 593.78 bp (89 pieces) subject to the described method of fingerprinting and computer processing. The primers are effective regardless of sample volume. The resulting profiles can be used to authenticate the strain Aspergillus niger L-4 from different sources.

Keywords: Aspergillus niger, citric acid producer, genetic profiling, AFLP-fingerprinting.

 

Full article (Rus)

Full text (Eng)

 

REFERENCES

  1. Sapers G.M., Miller R. Heated ascorbic/citric acid solution as browning inhibitor for pre-peeled potatoes. J. Food Sci., 1995, 63: 762-766 CrossRef
  2. Limbo S., Pierglovanni L. Shelf life of minimally processed potatoes. Part 1. Effects of high oxygen partial pressures in combination with ascorbic and citric acids on enzymatic browning. Postharvest Biology and Technology, 2006, 39(3): 254.
  3. Wichrowska D., Rogozinska I., Pawelzik E. Concentrations of some organic acids in potato tubers depending on weed control method, cultivar and storage conditions. Polish J. of Environ. Stud., 2009, 18(3): 487-491.
  4. Ananou S., Maqueda M., Martinez-Bueno M., Gálvez A., Valdivia E. Bactericidal synergism through enterocin AS-48 and chemical preservatives against Staphylococcus aureus. Letters in Applied Microbiology, 2007, 45: 19-23.
  5. Nielsen M.K., Arneborg N. The effect of citric acid and pH on growth and metabolism of anaerobic Saccharomyces cerevisiae and Zygosaccharomyces bailii cultures. FoodMicrobiology, 2007, 24: 101-105 CrossRef
  6. Permitina G.V., Verevkin E.L. Sposob polucheniya kontsentrirovannogo rastvora khelata zheleza i khelat zheleza. Patent 2278868 RF, MPK 51 C07F15/02, C07C229/16, C07C227/16, C05D9/02. Zayavl. 18.02.2005. Opubl. 27.06.2006 [A process for production of concentrated ferric chelate solution and ferric chelate. Application February 2, .2005. Published June 16, 2006 (in Russ.)].
  7. Nikiforova T.A., Mushnikova L.N., L'vova E.B. Osnovy mikrobnogo sinteza limonnoi kisloty [Basic processes of citric acid microbial synthesis]. St. Petersburg, 2005.
  8. Willems A., Doignon-Bourcier F., Coopman R., Hoste B., de Lajudie P., Gillis M. AFLP fingerprint analysis of Bradyrhizobiumstrains isolated from Faidherbia albida and Aeschynomene species. System. Appl. Microbiol., 2000, 23: 137-147 CrossRef
  9. Wdowiak-Wróbel S., Malek W. Genomic diversity of Astragalus cicer microsymbionts revealed by AFLP fingerprinting. J. Gen. Appl. Microbiol., 2005, 51: 369-378.
  10. Safronova V., Chizhevskaya E., Bullitta S., Andronov E., Belimov A., Charles T.C., Lindström K. Presence of a novel 16S-23S rRNA gene intergenic spacer insert in Bradyrhizobium canariense strains. FEMS Microbiol. Letters, 2007, 269: 207-212.
  11. Aserse A.A., Räsänen L.A., Assefa F., Hailemariam A., Lindström K. Phylogeny and genetic diversity of native rhizobia nodulating common bean (Phaseolus vulgaris L.) in Ethiopia. Syst. Appl. Microbiol., 2012, 35: 120-131 CrossRef
  12. Safronova V.I., Kimeklis A.K., Chizhevskaya E.P., Belimov A.A., Andronov E.E., Pinaev A.G., Pukhaev A.R., Popov K.P., Tikhonovich I.A. Genetic diversity of rhizobia isolated from nodules of the relic species Vavilovia formosa (Stev.) Fed. Antonie van Leeuwenhoek, 2014, 105: 389-399 CrossRef
  13. Mahmood T., Masud T., Imran M., Ahmed I., Khalid N. Selection and characterization of probiotic culture of Streptococcus thermophilus from Dahi. Int. J. Food Sci. Nutr., 2013, 64(4): 494-501 CrossRef
  14. Li Y., Canchaya C., Fang F., Raftis E., Ryan K.A., van Pijkeren J.-P., van Sinderen D., O’Toole P.W. Distribution of megaplasmids in Lactobacillus salivarius and other lactobacilli. J. Bacteriol., 2007, 189(1): 6128-6139 CrossRef
  15. Kudo Y., Oki K., Watanabe K. Lactobacillus delbrueckii subsp. sunkii subsp. nov., isolated from sunki, a traditional Japanese pickle. Int. J. Syst. Evol. Microbiol., 2012, 62: 2643-2649 CrossRef
  16. Martínez-Peña M.D., Castro-Escarpulli G., Aguilera-Arreola M.G. Lactobacillus species isolated from vaginal secretions of healthy and bacterial vaginosis-intermediate Mexican women: a prospective study. BMC Infect. Dis., 2013, 13: 189-197 CrossRef
  17. Kathuria S., Sharma C., Singh P.K., Agarwal P., Agarwal K., Hagen F., Meis J.F., Chowdhary A. Molecular epidemiology and in-vitro antifungal susceptibility of Aspergillus terreus species complex isolates in Delhi, India: Evidence of genetic diversity by amplified fragment length polymorphism and microsatellite typing. PLoS One, 2015, 10(3): e0118997 CrossRef
  18. Chiotta M.L., Reynoso M.M., Torres A.M., Combina M., Chulze S.N. Molecular characterization and toxigenic profile of Aspergillus section Nigri populations isolated from the main grape-growing regions in Argentina. J. Appl. Microbiol., 2011, 110(2): 445-454 CrossRef
  19. Xia X., Lie T.K., Qian X., Zheng Z., Huang Y., Shen Y. Species diversity, distribution, and genetic structure of endophytic and epiphytic Trichoderma associated with banana roots. Microb. Ecol., 2011, 61(3): 619-625 CrossRef
  20. Larralde-Corona C.P., Santiago-Mena M.R., Sifuentes-Rincón A.M., Rodríguez-Luna I.C., Rodríguez-Pérez M.A., Shirai K., Narváez-Zapata J.A. Biocontrol potential and polyphasic characterization of novel native Trichoderma strains against Macrophomina phaseolina isolated from sorghum and common bean. Appl. Microbiol. Biotechnol., 2008, 80(1): 167-177 CrossRef
  21. Paun O., Schönswetter P. Amplified fragment length polymorphism: an invaluable fingerprinting technique for genomic, transcriptomic, and epigenetic studies. Methods Mol. Biol., 2012, 862: 75-87 CrossRef
  22. Safronova V.I., Chizhevskaya E.P., Andronov E.E. Razrabotka metodiki molekulyarno-geneticheskoi pasportizatsii shtammov sel'skokhozyaistvennykh mikroorganizmov s pomoshch'yu AFLP-fingerprintinga [AFLP-fin-gerprinting method for a molecular-genetic certification of agricultural microorganisms]. SelskokhozyaistvennayaBiologiya [AgriculturalBiology], 2012, 6: 116-121 (in Russ.).
  23. Ermakova V.P., Shcherbakova E.Ya., Vasilinets I.M., Fin'ko V.M., Shushkevich T.N. Patent 975799 RF, MKIS12N 15/00, S 12R 7/48 Shtammgriba Aspergillus niger L-4 - produtsen tlimonnoi kisloty. Zayavl. 13.06.80. Opubl. 23.11.82 [Aspergillus niger L-4 strain, a producer of citric acid. Application June 13, 1980. Published November 23, 1982 (in Russ.)].
  24. Safronova V., Tikhonovich I. Automated cryobank of microorganisms: Unique possibilities for long-term authorized depositing of commercial microbial strains. In: Microbes in applied research: current advances and challenges. A. Mendez-Vilas (ed.). World Scientific Publishing Co., Singapore, 2012: 331-334 CrossRef
  25. Singh D., Radhakrishnan T., Kumar V., Bagwan N.B., Basu M.S., Dobaria J.R., Mishra G.P., Chanda S.V. Molecular characterisation of Aspergillus flavus isolates from peanut fields in India using AFLP. Braz. J. Microbiol., 2015, 46(3): 673-682 CrossRef

back