doi: 10.15389/agrobiology.2016.2.182eng

UDC 636.2:636.082.12:577.21

Supported by the Russian Ministry of Education and Science, project number RFMEFI60414X0062



A.A. Sermyagin1, E.A. Gladyr’1, S.N. Kharitonov1, A.N. Ermilov1,
N.I. Strekozov1, G. Brem1, 2, N.A. Zinovieva1

1L.K. Ernst All-Russian Research Institute of Animal Husbandry, Federal Agency of Scientific Organizations,
pos. Dubrovitsy, Podolsk Region, Moscow Province, 142132 Russia,
2Institute of Animal breeding and Genetics, University of Veterinary Medicine, Veterinärplatz, A-1210, Vienna, Austria

Received September 7, 2015


Genome-wide association study (GWAS) has been proven as a powerful tool for identifying genomic variants associated with economically important traits in domestic animal species. Development of the methods for genomic evaluation opens the new opportunities in improvement of milk production and fertility traits of livestock. The objective of our study was to evaluate the whole-genome associations between single nucleotide polymorphisms (SNPs) and estimated breeding values (EBVs) for milk production and reproduction traits in Russian Holsteins. SNPs screening was performed in 195 progeny-tested and 61 young bulls using Illumina Bovine SNP50 v2 BeadChip. EBVs were calculated for milk production traits (305-d milk yield (MY), milk fat content (FC), milk protein content (PC), milk fat yield (FY) and milk protein yield (PY)) and reproduction performances (age at fist calving (CA), calving difficulty (CD), conception rate (CR), days open (DO), gestation length (GL) and interval between calving (CI)) using BLUP Sire Model approach. In total, 41370 SNPs were selected for the association analysis based on the quality control results. Direct genomic values (DGV) were calculated by GBLUP approach using genomic relationship matrix (G). Genomic EBVs (GEBVs) were calculated as combination of residual polygenic effects (EBV) with the DGV. To increase the probabilities of GWAS values we used the GEBV values for young bulls, whereas deregressed DGV values were used for progeny-tested bulls. The Bonferroni correction test for detection of significant associations and local false discovery rate (LocFdr) were used to check a type I errors in null-cases hypothesis. Heritability coefficient values for reproduction traits ranged from 0.035 for CR to 0.221 CA, whereas for milk production traits they were higher, i.e. from 0.250 for MY to 0.401 for PC. According to the Bonferroni and LocFdr tests, we have identified several high-significant SNPs, which were associated both with milk production and with fertility traits. Two SNPs with the most significant effect on MY were located on BTA17 (ARS-BFGLNGS-50172) and BTA13 (Hapmap54246-rs29017970). The association analysis for milk components revealed four SNPs at conservative regions, which were significantly associated with FC, i.e. BTA-104917-no-rs and BTB-01604502 (58 Mb, BTA9), ARS-BFGL-NGS-107379 and ARS-BFGL-NGS-4939 (1.8-2.0 Mb, BTA14), and one SNP, which was significantly associated with PC — Hapmap 43278-BTA-50082 (BTA20). Polymorphisms ARS-BFGL-BAC-7205 (BTA1) and Hapmap48395-BTA-58382 (BTA5) were associated with PY. Several SNPs were found to be associated with reproduction traits, i.e. BTB-01622929 on BTA1 for CA, ARS-BFGL-NGS-89711 on BTA27 for CR, ARS-BFGL-NGS-117881 on BTA5 for DO, BTA-31636-no-rs on BTA1 and Hapmap26774-BTA-163037 on BTA27 for CI. The significant effects of SNPs explained up to more than 9.0 % of additive genetic variances. Some of the referent mutations with most significant effect were located within or close to the genes TRAFD1, DGAT1, SLC16A7, DUSP26 and CCDC58. Thus, application of a genome-wide analysis allows with high accuracy to detect the QTL for medium and low heritable productive and reproductive traits in Russian Holsteins. 

Keywords: genome-wide association analysis, heritability, milk production, fertility traits.


Full article (Rus)

Full text (Eng)



  1. Marzanov N.S., Devrishov D.A., Marzanova S.N., Komkova E.A., Ozerov M.Yu., Kantanen Yu. Geneticheskoe markirovanie, sokhranenie raznoobraziya i problemy razvedeniya zhivotnykh [Genetic labeling, conservation of biodiversity and the problems in animals breeding]. Selskokhozyaistvennaya Biologiya [AgriculturalBiology], 2011, 2: 3-14 (in Russ.).
  2. Stolpovskii Yu.A. Kontseptsiya i printsipy geneticheskogo monitoringa dlya sokhraneniya in situ porod domestitsirovannykh zhivotnykh Kavkaza [Concept and principles of genetic monitoring for the purpose of preservation in situ of domestical animals kinds]. Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2010, 6: 3-8 (in Russ.).
  3. Zinov'eva N.A., Strekozov N.I., Yanchukov I.N., Ermilov A.N., Es kin G.V. Zhivotnovodstvo Rossii, 2015, 3: 27-29 (in Russ.).
  4. Kuznetsov V.M. Problemy biologii produktivnykh zhivotnykh, 2012, 4: 18-57 (in Russ.).
  5. Sermyagin A.A., Seltsov V.I., Kostyunina O.V., Gladyr E.A., Kharzinova V.R., Zinovieva N.A. Book of Abstract «International scientific genetic conference «XXVI. GENETIC DAYS». Prague, Czech Republic, 2014: 135-138.
  6. Goddard M.E., Hayes B.J. Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nature Reviews Genetics, 2009, 10: 381-391 CrossRef
  7. Weller J.I. Quantitative trait loci analysis in animals. 2nd ed. CABI, UK, 2009.
  8. Hayes B.J., Bowman P.J., Chamberlain A.J., Goddard M.E. Invited review: Genomic selection in dairy cattle: Progress and challenges. J. Dairy Sci., 2009, 92: 433-443 CrossRef
  9. Pryce J.E., Gredler B., Bolormaa S., Bowman P.J., Egger-Danner C., Fuerst C., Emmerling R., Sölkner J., Goddard M.E., Hayes B.J. Short communication: Genomic selection using a multi-breed, across-country reference population. J. Dairy Sci., 2011, 94: 2625-2630 CrossRef
  10. Pérez O’Brien A.M., Utsunomiya Y.T., Mészáros G., Bickhart D.M.,
    Liu G.E., Van Tassell C.P., Tad S., Sonstegard T.S., da Silva M.V.B., Garcia J.F., Sölkner J. Assessing signatures of selection through variation in linkage disequilibrium between taurine and indicine cattle. Genetics Selection Evolution, 2014, 46: 19 CrossRef
  11. Boison S.A., Santos D.J.A., Utsunomiya A.H.T., Carvalheiro R., Neves H.H.R., Perez O’Brien A.M., Garcia J.F., Sölkner J., da Silva M.V.G.B. Strategies for single nucleotide polymorphism (SNP) genotyping to enhance genotype imputation in Gyr (Bos indicus) dairy cattle: Comparison of commercially available SNP chips. J. Dairy Sci., 2015, 98: 4969-4989 CrossRef
  12. Pryce J.E., Bolormaa S., Chamberlain A.J., Bowman P.J., Savin K., Goddard M.E., Hayes B.J. A validated genome-wide association study in 2 dairy cattle breeds for milk production and fertility traits using variable length haplotypes. J. Dairy Sci., 2010, 93: 3331-3345 CrossRef
  13. Bolormaa S., Pryce J.E., Hayes B.J., Goddard M.E. Multivariate analysis of a genome-wide association study in dairy cattle. J. Dairy Sci., 2010, 93: 3818-3833 CrossRef
  14. Chamberlain A.J., Hayes B.J., Savin K., Bolormaa S., McPartlan H.C., Bowman P.J., Van Der Jagt C., MacEachern S., Goddard M.E. Validation of single nucleotide polymorphisms associated with milk production traits in dairy cattle. J. Dairy Sci., 2012, 95: 864-875 CrossRef
  15. Qanbari S., Pimentel E.C.G., Tetens J., Thaller G., Lichtner P., Sharifi A.R., Simianer H. A genome-wide scan for signatures of recent selection in Holstein cattle. Animal Genetics, 2010, 41(4): 377-389 CrossRef
  16. Maxa J., Neuditschko M., Russ I., Förster M., Medugorac I. Genome-wide association mapping of milk production traits in Braunvieh cattle. J. Dairy Sci., 2012, 95: 5357-5364 CrossRef
  17. Fang M., Fu W., Jiang D., Zhang Q., Sun D., Ding X., Liu J. A multiple-SNP approach for genome-wide association study of milk production traits in Chinese Holstein cattle. PLoS ONE, 2014, 9(8): e99544 CrossRef
  18. Schopen G.C.B., Visker M.H.P.W., Koks P.D., Mullaart E., van Arendonk J.A.M., Bovenhuis H. Whole-genome association study for milk protein composition in dairy cattle. J. Dairy Sci., 2011, 94: 3148-3158 CrossRef
  19. Maurice-Van Eijndhoven M.H.T., Bovenhuis H., Veerkamp R.F., Calus M.P.L. Overlap in genomic variation associated with milk fat composition in Holstein Friesian and Dutch native dual-purpose breeds. J. Dairy Sci., 2015, 98: 6510-6521 CrossRef
  20. Cole J.B., Wiggans G.R., Ma L., Sonstegard T.S., Lawlor T.J. Jr., Crooker B.A., Van Tassell C.P., Yang J., Wang S., Matukumalli L.K., Da Y. Genome-wide association analysis of thirty one production, health, reproduction and body conformation traits in contemporary U.S. Holstein cows. BMC Genomics, 2011, 12: 408 CrossRef
  21. Wang X., Wurmser C., Pausch H., Jung S., Reinhardt F., Tetens J., Thaller G., Fries R. Identification and dissection of four major QTL affecting milk fat content in the German Holstein-Friesian population. PLoS ONE, 2012, 7(7): e40711 CrossRef
  22. Cole J.B., Waurich B., Wensch-Dorendorf M., Bickhart D.M., Swalve H.H. A genome-wide association study of calf birth weight in Holstein cattle using single nucleotide polymorphisms and phenotypes predicted from auxiliary trait. J. Dairy Sci., 2014, 97: 3156-3172 CrossRef
  23. Sahana G., Guldbrandtsen B., Lund M.S. Genome-wide association study for calving traits in Danish and Swedish Holstein cattle. J. Dairy Sci., 2011, 94: 479-486 CrossRef
  24. Fritz S., Capitan A., Djari A., Rodriguez S.C., Barbat A., Baur A., Grohs C., Weiss B., Boussaha M., Esquerre D., Klopp C., Rocha D., Boichard D. Detection of haplotypes associated with prenatal death in dairy cattle and identification of deleterious mutations in GART, SHBG and SLC37A2. PLoS ONE, 2013, 8(6): e65550 CrossRef
  25. Mészáros G., Eaglen S., Waldmann P., Sölkner J. A genome wide association study for longevity in cattle. Open Journal of Genetics, 2014, 4: 46-55 CrossRef
  26. Sahana G., Guldbrandtsen B., Thomsen B., Holm L-E., Panitz F., Brøndum R.F., Bendixen C., Lund M.S. Genome-wide association study using high-density single nucleotide polymorphism arrays and whole-genome sequences for clinical mastitis traits in dairy cattle. J. Dairy Sci., 2014, 97: 7258-7275 CrossRef
  27. Suchocki T., Szyda J. Genome-wide association study for semen production traits in Holstein-Friesian bulls. J. Dairy Sci., 2015, 98: 5774-5780 CrossRef
  28. Mészáros G., Petautschnig E., Schwarzenbacher H., Sölkner, J. Genomic regions influencing coat color saturation and facial markings in Fleckvieh cattle. Animal Genetics, 2015, 46(1): 65-68 CrossRef
  29. Misztal I., Legarra A., Aguilar I. Computing procedures for genetic evaluation including phenotypic, full pedigree, and genomic information. J. Dairy Sci., 2009, 92: 4648-4655 CrossRef
  30. Aguilar I., Misztal I., Johnson D.L., Legarra A., Tsuruta S., Lawlor T.J. Hot topic: A unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. J. Dairy Sci., 2010, 93: 743-752 CrossRef
  31. Legarra A., Ducrocq V. Computational strategies for national integration of phenotypic, genomic, and pedigree data in a single-step best linear unbiased prediction. J. Dairy Sci., 2012, 95: 4629-4645 CrossRef
  32. Pribyl J., Madsen P., Bauer J., Pribylová J., Šimecková M., Vostrý L., Zavadilová L. Contribution of domestic production records, Interbull estimated breeding values, And single nucleotide polymorphism genetic markers to the single-step genomic evaluation of milk production. J. Dairy Sci., 2013, 96: 1865-1873 CrossRef
  33. Garrick D.J., Taylor J.F., Fernando R.L. Deregressing estimated breeding values and weighting information for genomic regression analyses. GeneticsSelectionEvolution, 2009, 41: 55 CrossRef
  34. SAS/STAT 9.1 User’s Guide. SAS Institute Inc., Cary, NC, 2005.
  35. Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M., Bender D., Maller J., Sklar P., de Bakker P., Daly M.J., Sham P.C. PLINK: a toolset for whole-genome association and population-based linkage analysis. American Journal of Human Genetics, 2007, 81(3): 559-575 CrossRef
  36. Sermyagin A.A., Gladyr' E.A., Kharitonov S.N., Ermilov A.N., Yanchukov I.N., Strekozov N.I., Zinov'eva N.A. Materialy Mezhdunarodnoi nauchno-prakticheskoi konferentsii «Puti prodleniya produktivnoi zhizni korov na osnove optimizatsii razvedeniya, tekhnologii soderzhaniya i kormleniya zhivotnykh» [Proc. Int. Conf. «Optimized rearing and feeding for extended productive life in cows» (in Russ.)]. Dubrovitsy, 2015: 115-120.
  37. VanRaden P.M. Efficient methods to compute genomic predictions. J. Dairy Sci., 2008, 91: 4414-4423 CrossRef
  38. The R Project for Statistical Computing: Free software environment for statistical computing and graphics. Available: [No date].
  39. Efron B., Turnbull B.B., Narasimhan B. Locfdr: Computes local false discovery rates. R package version 1.1-7. 201 Available: [No date].
  40. Benjamini Y., Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B, 1995, 57: 289-300.
  41. Turner S.D. qqman: an R package for visualizing GWAS results using Q-Q and Manhattan plots. bioRxiv, 2014. Preprint first posted online May 14, 2014 CrossRef