UDC 636.52/.58:591.3:577.125:57.05:573.22

doi: 10.15389/agrobiology.2015.2.217eng


E.A. Kolesnik1, M.A. Derkho2

1All-Russian Research Institute of Veterinary Sanitation, Hygiene and Ecology (Ural Branch), Russian Academy of Agricultural Sciences, 18А, ul. Sverdlovskii trakt, Chelyabinsk, 454106 Russia,
e-mail: evgeniy251082@mail.ru;
2Ural State Academy of Veterinary Medicine, 13, ul. Gagarina, Troitsk, Chelyabinskaya Province, 457100 Russia,
e-mail: derkho2010@yandex.ru

Received June 5, 2014

Individual growth and development is a gradual vector process. Each period of ontogenesis is characterized by certain morphological and functional changes in organs, systems and the organism as a whole. Organic and functional transformations are genetically based and realized in the course of adaptation to the external environment factors. The transformations occur at different levels of which the intracellular level is the basic one. As far as biosynthetic processes and circulation of metabolites are separated, an occurrence of some elements for their regulation seems to be possible. For instance, structural cell components probably can be most effective regulators due to ability to contribute to morphological and functional integrity in cell. These structural elements are both the product and a regulator of metabolism directly reflecting state of all intracellular events. Membrane-cell response is a key element of molecular regulation. Phospholipids, the main components of cell membrane, are extremely sensitive to external and internal factors, being at the same time relatively stable due to genotype effect and adaptation ability. Participation and the role of subclasses of phospholipids in the functions of broiler chicks are little known. In this regard we have carried out the study of phospholipids profile of ISA-15 Hubbard F15 chicks during ontogenesis, particularly in eggs before and on day 10 of incubation, and in blood serum of chicks at postnatal period on days 1, 7, 23 and 42. The experimental chicks were kept at a poultry farm in Chelyabinsk Province. To establish the functional groups of subclasses of phospholipids in the ontogeny of broilers we used the multivariate cluster analysis. It was shown that in egg before incubation the phospholipids were grouped into two separate clusters (phosphatidylcholines and cerebrosides, Euclidean distance 1.08; and phosphatidylethanolamines, Euclidean distance 1.61) and one joint cluster (phosphatidylinositols with sphingomyelin and lysolecithin with cardiolipin, the Euclidean distance of 0.23). On the day 10 of incubation there were two joint clusters (lecithins with cephalins, the Euclidean distance of 1.61; phosphatidylinositols, sphingomyelins, cerebrosides and lysolecithin, Euclidean distance of 2.06) and also a transitional group (cardiolipins). During postnatal ontogenesis in 1-day old chickens three groups of phospholipids were found (lecithins, the Euclidean distance of 2.07; phosphatidylethanolamine with the cardiolipin, the Euclidean distance of 0.26; lysolecithin), while in 7-day old chicks there were two combined clusters (phosphatidylcholines, the Euclidean distance of 2.03; a complex of cephalins with phosphatidylinositol, the sphingomyelin and lysophosphatidylcholine) together with an intermediate cluster (cardiolipin). In 23-day old broilers three clusters of phospholipids were found (lecithins; phosphatidylethanolamines with the phosphatidylinositol; cardiolipin together with the lysolecithin and sphingomyelin). In 42 day aged broiler chickens the presence of two functional groups of phospholipids were revealed, namely a combined one (cephalins with the cardiolipin, phosphatidylinositol, sphingomyelin and lysolecithin) and monocomponent one (phosphatidylcholine). Thus it allows characterizing phospholipids as agents possessing structural and functional organization, which presumably can mediate regulation of homeostasis in early ontogeny of broiler chickens at cellular level, and as a result, at the body level.

Keywords: phospholipids, ontogeny, metabolism, homeostasis, functional system, broiler chickens.


Full article (Rus)

Full text (Eng)



  1. Elliot V., Elliot D. Biokhimiya i molekulyarnaya biologiya (perevod s angliiskogo) [Biochemistry and molecular biology (in Russian). A.I. Archakov, M.P. Kirpichnikov, A.E. Medvedev, V.P. Skulachev (eds.)]. Moscow, 2002.
  2. Alberts B., Bray D., Hopkin K., Johnson A., Lewis J., Raff M., Roberts K., Walter P. Essential sell biology (3d ed.). NY, London, 2010.
  3. Klimov A.N., Nikul'cheva N.G. Obmen lipidov i lipoproteidov i ego narusheniya [Lipid and lipoproteine metabolism and its disorders]. St. Petersburg, 1999.
  4. Kolesnik E.A., Derkho M.A. Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2013, 6: 89-93 CrossRef, CrossRef
  5. Gundermann K.-J. The «essential» phospholipids as a membrane therapeutic. Polish Section of European Society of biochemical pharmacology. Szczecin, Jota Press, 1993.
  6. Bergel'son L.D. Membrany, molekuly, kletki. Moscow, 1982.
  7. Van Meer G., Holthuis J.C. Sphingolipid transport in eukaryotic cells. BBA, 2000, 1486: 145-170.
  8. Hannun Y.A., Luberto C. Ceramide in the eukaryotic stress response. Trends Cell Biol., 2000, 10: 73-80 (PMID: 10652518; PubMed — indexed for MEDLINE).
  9. Spiegel S., Merrill A.H. Sphingolipid metabolism and cell growth regulation. FASEB J., 1996, 10: 1388-1397.
  10. Borchman D., Byrdwell W.C., Yappert M.C. Regional and age-dependent differences in the phospholipid composition of human lens membranes. Invest. Ophthalmol. Vis. Sci., 1994, 35: 3938-3942 (PMID: 7928192; PubMed — indexed for MEDLINE).
  11. Killian J.A., Van Meer G. The «double life» of membrane lipids. EMBO Reports, 2001, 21: 91-95.
  12. Pomorski T., Hrafnsdottir S., Devaux P.F., Van Meer G. Lipid distribution and transport across cellular membranes. Semin. Cell Dev. Biol., 2001, 12: 139-148 (PMID: 11292380; PubMed — indexed for MEDLINE).
  13. Lambeth J.D., Ryu S.H. Glycerolipids in signal transduction. In: Biochemistry of lipids, lipoproteins and membranes. D.E. Vance, J.E. Vance (eds.). Elsevier Science, Amsterdam, 1996: 237-255.
  14. Merrill A.H.J., Sweely C.C. Sphingolipid: metabolism and cell signalling. In: Biochemistry of lipids, lipoproteins and membranes. D.E. Vance, J.E. Vance (eds.). Elsevier Science, Amsterdam, 1996: 1-34.
  15. Pulfer M., Murphy R.C. Electrospray mass spectrometry of phospholipids. Mass Spectrom. Rev., 2003, 22: 332-364 CrossRef
  16. Wang Y., Krull I.S., Liu C., Orr J.D. Derivatization of phospholipids. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2003, 793: 3-14.
  17. Hatch G.M. Cell biology of cardiac mitochondrial phospholipids. Biochem. Cell. Biol., 2004, 82: 99-112 (PMID: 15052331; PubMed — indexed for MEDLINE).
  18. Prokazova N.V., Zvezdina N.D., Korotaeva A.L. Biokhimiya, 1998, 63(1): 38-46.
  19. Sattler M., Verma S., Pride Y.B., Salgia R., Rohrschneider L.R., Griffin J.D. SHIP1, an SH2 domain containing polyinositol-5-phosphatase, regulates migration through two critical tyrosine residues and forms a novel signaling complex with DOK1 and CRKL. J. Biol Chem., 2001, 276: 2451-2458.
  20. Calderon R.O., DeVries G.H. Lipid composition and phospholipid asymmetry of membrane from Schwann cell line. J. Neurosci. Res., 1997, 49: 372-380.
  21. Kato N., Nakanishi M., Hirashima N. Transbilayer asymmetry of phospholipids in plasma membrane rergulates exocytotic release in mast cells. Biochemistry, 2002, 41: 8068-8074 (PMID: 12069598; PubMed — indexed for MEDLINE).
  22. Gorski J., Zendzian-Piotrowska M., DeJong Y.F., Niklinska W., Glatz J.F. Effect of endurance training on the phospholipid content of skeletal muscles in the rat. Eur. J. Appl. Physiol. Occup. Physiol., 1999, 79: 421-425 CrossRef
  23. Holthuis J.C., Pomorski T., Raggers R.J., Sprong H., Van Meer G. The organizing potential of sphingolipids in intracellular membrane transport. Physiol Rev., 2001, 81: 1689-1723 (PMID: 11581500; PubMed — indexed for MEDLINE).
  24. Wu J., Spiegel S., Sturgill T.W. Sphingosine 1-phosphate rapidly activates the mitogen-activated protein kinase pathway by a G protein-dependent mechanism. J. Biol Chem., 1995, 270: 11484-11488 (PMID: 7744787; PubMed — indexed for MEDLINE).
  25. Rekomendatsii po kormleniyu sel'skokhozyaistvennoi ptitsy [Poultry feeding: recommendations. V.I. Fisinin, SH.A. Imangulov, I.A. Egorov, T.M. Okolelova (eds.)]. Sergiev Posad, 2004.
  26. Rukovodstvo po vyrashchivaniyu broilerov Hubbard ISA [Hubbard ISA broiler breeding: manual guide]. Hendrix Genetics Inc., 2012 (http://hubbardbreeders.com).
  27. Sharshunova M., Shvarts V., Mikhalets S. Tonkosloinaya khromatografiya v farmatsii i klinicheskoi biokhimii. Tom 1 [Thin loyer chromatography in pharmacy and clinical biochemistry. V. 1. V.G. Berezkin, S.D. Sokolov (eds.)]. Moscow, 1980.
  28. Khalafyan A.A. Statistica v. 6. Statisticheskii analiz dannykh [Statistica v. 6. Statistical analysis]. Moscow, 2007.
  29. Mirkin B.G. Metody klaster-analiza dlya podderzhki prinyatiya reshenii [Clustering as a dicision-making tool]. Moscow, 2011.
  30. Kolesnik E.A., Derkho M.A. Vestnik Tomskogo gosudarstvennogo universiteta, 2013, 368: 186-188.
  31. Knoll W., Frank C.W., Heibel C., Naumann R., Offenhausser A., Ruhe J., Schmidt E.K., Shen W.W., Sinner A. Functional tethered lipid bilayers. J. Biotechnol., 2000, 74: 137-158 (PMID: 11143794; PubMed — indexed for MEDLINE).
  32. Ivkov V.G., Berestovskii G.N. Lipidnyi bisloi biologicheskikh membrane [Lipid bilayer of biomembranes]. Moscow, 1982.
  33. Coste H., Martel M.B., Got R. Topology of glucosylceramide synthesis in Golgi membranes from porcine submaxillary glands. BBA, 1986, 858: 6-12 (PMID: 2939881; PubMed — indexed for MEDLINE).
  34. Yeagle P.L. Cholesterol and the cell membrane. BBA, 1985, 822: 267-287 (PMID: 3904832; PubMed — indexed for MEDLINE).
  35. Auge N., Negre-Salvayre A., Salvayre R., Levade T. Sphingomyelin metabolites in vascular cell signaling and atherogenesis. Prog. Lipid Res., 2000, 39: 207-229 (PMID: 10799716; PubMed — indexed for MEDLINE).
  36. Prieschl E.E., Baumruker T. Sphingolipids: second messengers, mediators and raft ñonstituents in signaling. Immunol. Today, 2000, 21: 555-560 (PMID: 11094259; PubMed — indexed for MEDLINE). 
  37. Levade T., Auge N. Sphingolipid mediators in cardiovascular cell biology and pathology. Circulation Res., 2001, 89: 957-977.
  38. Heringdorf D.M., Van Koppen C.J., Jakobs K.H. Molecular diversity of sphingolipid signalling. FEBS Lett., 1997, 410: 34-38 CrossRef
  39. Boucher L.M., Wiegmann K., Futterer A., Pfeffer K., Machleidt T., Schutze S., Mak T.W., Kronke M. CD28 signals through acidic sphingomyelinase. J. Exp. Med., 1995, 181: 2059-2068 (PMCID: PMC2192051).
  40. Kim M.Y., Linardic C., Obeid L., Hannun Y. Identification of sphingomyelin turnover as an effector mechanism for the action of tumor necrosis factor alpha and gamma-interferon. Specific role in cell differentiation. J. Biol. Chem., 1991, 266: 484-489 (PMID: 1845977; PubMed — indexed for MEDLINE). 
  41. Silins I., Nordstrand M., Hogberg J., Stenius U. Sphingolipids suppress preneoplastic rat hepatocytes in vitro and in vivo. Carcinogenesis, 2003, 24: 1077-1083 (PMID: 12807752; PubMed — indexed for MEDLINE).
  42. Chatterjee S. Sphingolipids in atherosclerosis and vascular biology. Arterioscler. Thromb. Vasc. Biol., 1998, 18: 1523-1533 CrossRef
  43. Pendaries C., Tronchere H., Plantavid M., Payrastre B. Phosphoinositide signaling disorders in human diseases. FEBS Lett., 2003, 546: 25-31 CrossRef
  44. Breitschopf K., Zeiher A.M., Dimmeler S. Pro-atherogenic factors induce telomerase inactivation in endothelial cells through an Aktdependent mechanism. FEBS Lett., 2001, 493: 21-25 CrossRef
  45. Cerbon J., Falcon A., Hernandez-Luna C., Segura-Cobos D. Inositol phosphoryl ceramide synthase a regulator of intracellular levels of diacylglcerol and ceramide during the G1 to S transition in Saccharomyces cerevisae. Biochem. J., 2004, Nov 24 CrossRef