doi: 10.15389/agrobiology.2013.2.71eng

UDC 636.1/.2:599.723:575.174.015.3


V.I. Glazko1, E.A. Gladyr'2, A.V. Feofilov1, N.V. Bardukov1, T.T. Glazko1

1Russian State Agrarian University – Moscow Timiryazev Agricultural Academy,
49, ul. Timiryazevskaya, Moscow, 127550 Russia,
2All-Russian Research Institute of Animal Husbandry, Russian Academy of Agricultural Sciences,
pos. Dubrovitsy, Moscow Province, 142132 Russia

Received January 11, 2013


Highly polymorphic ISSR-PCR markers, the DNA fragments  flanked by invert microsatellite repeats, are widely applied with the aim of the genomic scan (polyloci genotyping). The sequencing of such DNA fragments from domestic horse and cattle genomes testified the close connection between the inverted microsatellite repeats and products of recombination between endogenous retroviruses. Mutual genomic positioning of microsatellites and endogenous retroviruses as a source of polymorphisms of ISSR-PCR markers was discussed.

Keywords: microsatellites, retrotransposons, endogenous retroviruses, ISSR-PCR markers.


Full article (Rus)

Full text (Eng)



1. Lowry D.B. Landscape evolutionary genomics. Biol. Lett., 2010, 6: 502-550.
2. Zietkiewicz E., Rafalski A., Labuda D. Genome fingerprinting by seguence repeat (SSR) anchored polymerase chain reaction amplification. Genomics, 1994, 20: 176-183.
3. Cook G.W., Konkel M.K., Major J.D., Walker J.A., Han K., Batzeret M.A. Alu pair exclusions in the human genome. Mobile DNA, 2011, 2(10): 1-16.
4. Glazko V.I. Doklady akademii nauk, 2011, 436(2): 267-269.
5. Glazko V.I., Feofilov A.V., Bardukov N.V., Glazko T.T. Izvestiya TSKHA, 2012, 1: 118-125.
6. Glazko V.I., Bardukov N.V., Pheophilov A.V., Sipko T.P., Elkina M.A., Glazko T.T. Polymorphism of ISSR and IRAP markers in genomes of musk-oxen (Ovibos moschatus)and horse (Equus caballus) of Altai breed. Izvestia of Timiryazev Agricultural Academy, 2012, Special Issue: 16-26.
7. Bao W., Jurka J. DNA transposons from zebrafish. Repbase Reports, 2008, 8(11): 1720.
8. Smit A.F. Identification of a new, abundant superfamily of mammalian LTR-transposons. Nucl. Acids Res., 1993, 21(8): 1863-1870.
9. Jurka J. Putative non-autonomous ERV1-type endogenous retrovirus from horse. Repbase Reports, 2008, 8(5): 601.
10. Gifford R., Kabat P., Martin J. et al. Evolution and distribution of class II-related endogenous retroviruses. J. Virol., 2005, 79: 6478-6486.
11. Jurka J. Long terminal repeats from domestic cow. Repbase Reports, 2008, 8(8): 847-847.
12. Jurka J. Endogenous retroviruses from tarsier. Repbase Reports, 2010, 10(9): 1202-1202.
13. Kohany O., Jurka J. LTR retrotransposons from cow. Repbase Reports, 2008, 8(6): 674-674.
14. Tellam R.L., Worley K.C. The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science, 2009, 324: 522-528.
15. Wang D., Su Y., Wang X., Lei Y., Yu J. Transposon-derived and satellite-derived repetitive sequences play distinct functional roles in mammalian intron size expansion. Evolutionary Bioinformatics, 2012, 8: 301-319.
16. Wade C.M., Giulotto E., Sigurdsson S. et al. Genome sequence, comparative ana-lysis, and population genetics of the domestic horse. Science, 2009, 326(5954): 865-867.
17. Nellеker C., Keane T.M., Yalcin B. et al. The genomic landscape shaped by selection on transposable elements across 18 mouse strains. Genome Biology, 2012, 13(R45): 1-21.
18. Carareto C.M.A. Tropical Africa as a cradle for horizontal transfers of transposable elements between species of the genera Drosophila and Zaprionus. Mobile Genetic Elements, 2011, 1(3): 179-186.
19. Garcia-Etxebarria K., Jugo B.M. Genome-wide detection and characterization of endogenous retroviruses in Bos taurus. J. Virol., 2010, 84: 10852-10862.
20. Van der Kuyl A.C. Characterization of a full-length endogenous beta-retrovirus, EqERV-Beta1, in the genome of the horse (Equus caballus). Viruses, 2011, 3: 620-628.