doi: 10.15389/agrobiology.2024.1.116eng

UDC: 633.111.1:631.522/.524:581.192

Supported financially by the Ministry of Science and Higher Education of the Russian Federation under agreement № 075-15-2021-1050 of September 28, 2021



N.S. Lysenko1 , L.L. Malyshev1, R.K. Puzansky2, A.L. Shavarda2,
T.V. Shelenga1

1Federal Research Center Vavilov All-Russian Institute of Plant Genetic Resources, 42-44, ul. Bolʼshaya Morskaya, St. Petersburg, 190000 Russia, e-mail,, (✉ corresponding author);
2Komarov Botanical Institute RAS, 2, ul. Professora Popova, St. Petersburg, 197022 Russia, e-mail,

Lysenko N.S.
Shavarda A.L.
Malyshev L.L.
Shelenga T.V.
Puzansky R.K.

Final revision received May 04, 2023
Accepted November 15, 2023

All cultivated land in the world is approximately 50 % acidic soil, in Russia it is approximately 30 %. This limits the production of economically significant crops. The area of highly acidic farmland increases annually. The main stressor of acidic soils are aluminum ions (Al3+). One of the most economically significant crops for the Russian Federation is wheat. Therefore, the search for alumotolerant wheat forms remains relevant. The largest number of Al3+ resistant genotypes is found among hexaploid wheat species with genome D, which include Triticum aestivum L. A distinctive feature of this culture is the combination of low temperatures resistance with good baking quality of the flour, therefore, the search for aluminum-tolerant forms among T. aestivum genotypes is economically justified. Hexaploid wheats are well represented in the collection of the Vavilov All-Russian Institute of Plant Genetic Resources (VIR), the main part of which (44 thousand samples) is T. aestivum. In this paper, we for the first time compared the metabolomic profiles (MP) of T. aestivumaccessions of different eco-geographical origins adapted to the conditions of the North-West of the Russian Federation, and identified the MP features in aluminum tolerant forms to detect putative metabolic markers for resistance to aluminum ions. Nonspecific metabolomic profiling of 7-day seedling rootlets of 20 T. aestivum accessions varying in degree of sensitivity to Al3+ was performed using gas chromatography coupled with mass spectrometry. Polyols, nucleosides, lactone forms of organic acids, free fatty acids and their derivatives, trioses, pentoses, hexoses, oligosaccharides, phenol-containing substances, terpenes, phytosterols were better represented in MP genotypes with low sensitivity to Al3+. Dispersion analysis revealed significant differences of the MP of the accessions with a more expressed resistance to Al3+. Exposure to a stressor presumably causes changes in the Krebs cycle, the synthesis of carbohydrates, plant hormones, other protective factors, glycerolipids and triglycerides of the membrane complex. Classical discriminant analysis followed by canonical analysis allowed us to identify eleven components with 100 % confidence separating T. aestivum samples with varying degrees of aluminum tolerance. Phosphoric, malic, succinic acids, tetra (RI = 1537) and pentaatomic (RI = 1735) alcohols, and linoleic acid methyl ester, which are statistically confirmed as aluminum tolerance markers, were the most informatively significant factors characterizing resistant forms of T. aestivum. The established biomarkers can be used to search for forms of T. aestivumresistant to Al3+. These forms will be involved in breeding for highly productive T. aestivum varieties with complex resistance to stress factors and adapted to production in the conditions of the North-West of the Russian Federation.

Keywords: Triticum aestivum, aluminum resistance, non-specific metabolomic profiling, biomarkers, gas chromatography-mass spectrometry.



  1. Hernández M., Borges A.A., Francisco-Bethencourt D. Mapping stressed wheat plants by soil aluminum effect using C-band SAR images: implications for plant growth and grain quality. Precision Agriculture, 2022, 23: 1072-1092 CrossRef
  2. Ma J.F., Ryan P.R., Delhaize E. Aluminum tolerance in plants and the complexing role of organic acids. Trends Plant Sciences, 2001, 6: 273-278 CrossRef
  3. Gupta N., Gaurav S., Kumar A. Molecular basis of aluminium toxicity in plants: a review. American Journal of Plant Sciences, 2013, 4(12): 21-37CrossRef
  4. Yakovleva O.V. Trudy po prikladnoy botanike, genetike i selektsii, 2018, 179(3): 315-331 CrossRef (in Russ.).
  5. Gallo-Franco J.J., Sosa C.C., Ghneim-Herrera T., Quimbaya M. Epigenetic control of plant response to heavy metal stress: a new view on aluminum tolerance. Frontiers Plant Science, 2020, 11:602-625 CrossRef
  6. Garcia-Oliveira A.L., Chander S., Barcelo J., Poschenrieder C. Aluminium stress in crop plants. In: Recent advances in plant stress physiology. P. Yadav, S. Kumar, V. Jain (eds.). New Delhi, Astral International Pvt., Ltd., 2016: 237-263.
  7. Liu W., Xu F., Lv T., Zhou W., Chen Y., Jin C., Lu L., Lin X. Spatial responses of antioxidative system to aluminum stress in roots of wheat (Triticum aestivum L.) plants. Science of the Total Environment, 2018, 627: 462-469 CrossRef
  8. Liu H., Zhu R., Shu K., Lv W., Wang S., Wang C. Aluminum stress signaling, response, and adaptive mechanisms in plants. Plant Signaling Behavior, 2022, 17(1): e2057060 CrossRef
  9. Agegnehu G., Amede T., Erkossa T., Yirga C., Henry C., Tyler R., Nosworthy M.G., Beyene S., Sileshi G.W. Extent and management of acid soils for sustainable crop production system in the tropical agroecosystems: a review, Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 2021, 71(9): 852-869 CrossRef
  10. Sarker S., Ghosh S., Hossain M., Ghosh R., Razia S., Sushmoy D., Noor M. Impact of aluminium (Al3+) stress on germination and seedling growth of five wheat genotypes. SAARC Journal of Agriculture, 2019, 17(1): 65-76 CrossRef
  11. Shovon H., Sagar A., Mia M., Rakhi F., Tajkia J., Kabir M., Shabi T., Dhar M, Hossain A. Boron-mediated aluminium stress tolerance under aluminium toxicity at germination and early seedling stages of wheat. Progressive Agriculture, 2021, 32(2): 127-139 CrossRef
  12. Avdonin N.S. Vliyanie svoystv pochv i udobreniy na kachestvo rasteniy [The influence of soil properties and fertilizers on plant quality]. Moscow, 1972 (in Russ.).
  13. Baligar V.C. Aluminum toxicity in crop plants. Journal of Plant Nutrition, 1988, 11(3): 303-319 CrossRef
  14. Alekseeva-Popova N.V. V sbornike: Ustoychivost’ k tyazhelym metallam dikorastushchikh vidov [In: Resistance to heavy metals in wild species]. Leningrad, 1991: 5-15 (in Russ.).
  15. Amosova N.V., Nikolaeva O.N., Synzynys B.I. Mechanisms of aluminum tolerance in cultivated plants (review). Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2007, 1: 36-42 (in Russ.).
  16. Rosstat. Sel’skoe khozyaystvo, okhota i lesnoe khozyaystvo 2022[Agriculture, hunting and forestry 2022]. Available: Accessed: 20.04.2023 (in Russ.).
  17. Raman H., Zhang K., Cakir M., Appels R., Garvin D., Maron L., Kochian L., Moroni J. Molecular characterization and mapping of ALMT1, the aluminium-tolerance gene of bread wheat (Triticum aestivum L.). Genome, 2021, 48(5): 781-791 CrossRef
  18. Tamas L., Huttova J., Hajasova L., Mistrik I. The effect of aluminium on polypeptide pattern of cell wall proteins isolated from the roots of Al-sensitive and Al-resistant barley cultivars. Acta Physiol. Plant., 2001, 23(2): 161-168 CrossRef
  19. Pukhal’skaya N.V. Agrokhimiya, 2005, 8: 70-82 (in Russ.).
  20. Niedziela A., Domżalska L., Dynkowska W.M., Pernisová M., Rybka K. Aluminum stress induces irreversible proteomic changes in the roots of the sensitive but not the tolerant genotype of triticale seedlings. Plants, 2022, 11: 165 CrossRef
  21. Matsumoto H. Cell biology of aluminum toxicity and tolerance in higher plants. International Review of Cytology, 2000, 200: 1-46 CrossRef
  22. Sivaguru M., Fujiwara T., Samaj J., Baluska F. Aluminum-induced 1®3-beta-D-glucan inhibits cell-to-cell trafficking of molecules through plasmodesmata. A new mechanism of aluminum toxicity in plants. Plant Physiology, 2000, 124(3): 991-1006 CrossRef
  23. Kochian L.V., Hoekenga O.A., Pineros M.A. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency: Annual Review of Plant Biology, 2004, 55: 459-493 CrossRef
  24. Yang G., Wei Q., Huang H., Xia J. Amino acid transporters in plant cells: a brief review. Plants, 2020, 9(8): 967 CrossRef
  25. Kochian L.V. Cellular mechanisms of aluminum toxicity and resistance in plants. Annual Review of Plant Physiology and Plant Mololecular Biology, 1995, 46: 237-260 CrossRef
  26. Ryan P.R. Dong D., Teuber F., Wendler N., Mühling K., Liu J., Xu M., Salvador Moreno N., You J., Maurer H.-P., Horst W.J., Delhaize E. Assessing how the aluminum-resistance traits in wheat and rye transfer to hexaploid and octoploid triticale. Frontiers in Plant Science, 2018, 9: 1334 CrossRef
  27. Shtark O.Y., Puzanskiy R.K., Avdeeva G.S., Yurkov A.P., Smolikova G.N., Yemelyanov V.V., Kliukova M.S., Shavarda A.L., Kirpichnikova A.A., Zhernakov A.I., Afonin A.M., Tikhonovich I.A., Zhukov V.A., Shishova M.F. Metabolic alterations in pea leaves during arbuscular mycorrhiza development. PeerJ, 2019, 7: e7495 CrossRef
  28. Pinto V.B., Almeida V.C., Pereira-Lima Í.A., Vale E.M., Araujo W.L., Silveira V., Viana J.M.S. Deciphering the major metabolic pathways associated with aluminum tolerance in popcorn roots using label-free quantitative proteomics. Planta, 2021, 254: 132 CrossRef
  29. Mashabela M.D., Piater L.A., Steenkamp P.A., Dubery I.A., Tugizimana F., Mhlongo M.I. Comparative metabolite profiling of wheat cultivars (Triticum aestivum) reveals signatory markers for resistance and susceptibility to stripe rust and aluminium (Al3+) toxicity. Metabolites, 2022, 12(2): 98 CrossRef
  30. Popolnenie, sokhranenie v zhivom vide i izuchenie mirovoy kollektsii pshenitsy, egilopsa i tritikale: metodicheskie ukazaniya /Pod redaktsiey A.F. Merezhko [Replenishment, preservation and study of the wheat, aegilops and triticale world collection: guidelines. A.F. Merezhko (ed.)]. St. Petersburg, 1999 (in Russ.).
  31. Lysenko N.S. Materialy konferentsii molodykh uchenykh i aspirantov «Geneticheskie resursy rasteniy i selektsiya» [Proc. Conf. «Plant genetic resources and breeding»]. St. Petersburg, 2012, 11-18 (in Russ.).
  32. Lysenko N.S., Loseva V.A., Mitrofanova O.P. Trudy po prikladnoy botanike, genetike i selektsii, 2019, 180(3): 41-49 CrossRef (in Russ.).
  33. Aniol A. Genetics of acid tolerant plant. In: Plant-soil interactions at low pH. Developments in plant and soil sciences. R.J. Wright, V.C. Baligar, R.P. Murrmann (eds.). Springer, Dordrecht, 1991, 45: 1007-1017 CrossRef
  34. Kosareva I.A., Davydova G.V., Semenova E.V. Metodicheskie ukazaniya po opredeleniyu kislotoustoychivosti zernovykh kul’tur [Guidelines for determining the acid resistance of grain crops]. St. Petersburg, 1994 (in Russ.).
  35. Perchuk I., Shelenga T., Gurkina M., Miroshnichenko E., Burlyaeva M. Composition of primary and secondary metabolite compounds in seeds and pods of asparagus bean (Vigna unguiculata (L.) Walp.) from China. Molecules, 2020, 25: 3778 CrossRef
  36. Puzanskiy R., Tarakhovskaya E., Shavarda A., Shishova M. Metabolomic and physiological changes of Chlamydomonas reinhardtii (Chlorophyceae, Chlorophyta) during batch culture development. Jornal of Applied Phycology, 2018, 30(2): 803-818 CrossRef
  37. Oh M.W., Roy S.K., Kamal A.H., Cho K., Cho S.W., Park C.S., Choi J.S., Komatsu S., Woo S.H. Proteome analysis of roots of wheat seedlings under aluminum stress. Molecular Biology Reports, 2014, 41(2): 671-681 CrossRef
  38. Zia M., Ali J.S., Hanif S., Sajjad A., Abbasi B.H. Lupeol, a plant triterpenoid mitigates salt induced stress: growth and antioxidative response of Brassica nigra under in vitro condition. Plant Cell, Tissue and Organ Culture, 2023,154: 327-335CrossRef
  39. Kolupaev Yu.E., Yastreb T.O. Fiziologiya i biokhimiya kul’turnykh rasteniy, 2013, 45(2): 113-126 (in Russ.).
  40. He Y., Fukushige H., Hildebrand D.F., Gan S. Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence. Plant Physiology, 2002, 128(3):876-884 CrossRef
  41. He M., Ding N.-Z. Plant unsaturated fatty acids: multiple roles in stress response. Frontiers in Plant Science, 2020, 11:562785 CrossRef
  42. Zi X., Zhou S., Wu B. Alpha-linolenic acid mediates diverse drought responses in maize (Zea mays L.) at seedling and flowering stages. Molecules, 2022, 27(3):771 CrossRef
  43. Singh S., Parihar P., Singh R., Singh V.P., Prasad S.M. Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Frontiers in Plant Science, 2016, 6: 1143 CrossRef
  44. Rodrigues M., Ganança J.F.T., da Silva E.M., dos Santos T.M.M., Slaski J.J., Zimny J., Pinheiro de Carvalho M.Â.A. Evidences of organic acids exudation in aluminium stress responses of two Madeiran wheat (Triticum aestivum L.) landraces. Genetic Resources and Crop Evolution, 2019, 66, 857-869 CrossRef
  45. Barsukova V.S. Fiziologo-geneticheskie aspekty ustoychivosti rasteniy k tyazhelym metallam. Ekologiya. Seriya analiticheskikh obzorov mirovoy literatury[Physiological and genetic aspects of plant resistance to heavy metals. Ecology. A series of analytical reviews of world literature]. Novosibirsk, 1997, 47 (in Russ.).
  46. Delhaize E., Ryan P.R. Aluminum toxicity and tolerance in plants. Plant Physiology, 1995,107: 315-321 CrossRef
  47. Sairam R.K., Tyagi A. Physiology and molecular biology of salinity stress tolerance in plants. Current Science, 2004, 86(3): 407-421.
  48. Schmitt M., Boras S., Tjoa A., Watanabe T., Jansen S. Aluminium accumulation and intra-tree distribution patterns in three arbor aluminosa (Symplocos) species from Central Sulawesi. PLoS ONE, 2016, 11: e0149078 CrossRef
  49. Ito D., Shinkai Y., Kato Y., Kondo T., Yoshida K. Chemical studies on different color development in blue and red-colored sepal cells of Hydrangea macrophylla. Biosci. Biotechnol. Biochem., 2009, 73: 1054-1059 CrossRef
  50. Nigro D., Grausgruber H., Guzman C., Laddomada B. Phenolic compounds in wheat kernels: genetic and genomic studies of biosynthesis and regulation. In: Wheat quality for improving processing and human health. G. Igrejas, T.M. Ikeda, C. Guzman (eds.). Springer Nature, Basingstoke, UK, 2020: 225-253 CrossRef
  51. Shabir H.W., Vinay K., Varsha Sh., Saroj K.S., Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. The Crop Journal, 2016, 4(3): 162-176 CrossRef