PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2020.1.27eng

UDC: 633.11:631.522.524:632.4 (470.44.47)

Acknowledgements:
Supported financially by the Russian Foundation for Basic Research, project No. 18-016-00170

 

ENLARGEMENT OF GENETIC DIVERSITY OF SPRING BREAD WHEAT RESISTANCE TO LEAF RUST (Puccinia triticina Eriks.) IN LOWER VOLGA REGION

E.I. Gultyaeva1, S.N. Sibikeev2, A.E. Druzhin2, E.L. Shaydayuk1

1All-Russian Research Institute of Plant Protection, 3, sh. Podbel’skogo, St. Petersburg, 196608 Russia, e-mail eigultyaeva@gmail.com (✉ corresponding author), eshaydayuk@bk.ru;
2Agricultural Research Institute for South-East Regions, 7, ul. Tulaikova, Saratov 410010 Russia, e-mail sibi-keev_sergey@mail.ru, alex_druzhin@mail.ru

ORCID:
Gultyaeva E.I. orcid.org/0000-0001-7948-0307
Sibikeev S.N orcid.org/0000-0001-8324-9765
Druzhin A.E. orcid.org/0000-0002-3968-2470
Shaydayuk E.L. orcid.org/0000-0003-3266-6272

Received September 3, 2019

 

Leaf rust (Puccinia triticina Eriks.) is the significant disease of winter and spring wheat in Russia. In the Volga region, the epiphytoties of this disease are observed on average once per three to four years. The genetic protection of wheat from leaf rust is a priority. Its successful practical implementation is possible only by the increasing of the genetic diversity of the commercial wheat cultivars, particularly by effective combinations of the known genes for resistance or use in the hybridization donors of new Lr-genes, from species of genera Triticum and Aegilops. On the basis of highly productive and adaptive spring bread wheat cultivars (Prokhorovka, Saratovskaya 29, Saratovskaya 55, Saratovskaya 68, Saratovskaya 70, Saratovskaya 73, Saratovskaya 74, L503, L505, Dobrynya, Favorite, Belyanka, Voevoda of Saratov Breeding Center) and alien species the introgression lines are derived which possess high resistance to leaf rust and are promising as breeding material. It was of interest to study the genetic determination of leaf rust resistance in these new lines and to evaluate their effect on the variability of P. triticina population for virulence in Saratov region. A total of 42 introgression lines were investigated. Donors of alien Lr-genes were the lines of cultivar Thahcher with Lr24, Lr29, Lr36 genes, and cultivars with Lr37 gene, and also species Triticum dicoccum, T. kiharae, T. timopheevii, T. durum, T. petropavloskyi, T. persicum, Aegilops tauschii, Secale sereale and Agropyron elongatum. Leaf rust resistance genes (Lr-genes) were identified by phytopathological tests and DNA markers. The studied lines of spring bread wheat showed high genetic diversity for leaf rust resistance. Among them, we have identified the carriers of known Lr-genes which have not yet been used in breeding of spring bread wheat in Russia (L4 with Lr29), and also the carriers of presumably new Lr-genes transferred from T. durum (L8, L39 for Lr19 + LrTdur, L25, L19, L11 for Lr10 + Lr19 + LrTdur), T. persicum (L38 for Lr19 + LrT.pers), T. timopheevii (L49 for Lr10 + LrT.tim), Ae. tauschii (L6 for Lr19 + LrA.tau), and T. kiharae (L33 for Lr3 + Lr19 + LrT.kh). Lines L10, L13, L46, L24, L48, L5 and L9 have the effective combination of Lr19 + Lr26 genes, L2, L28 L29 of Lr10 + Lr19 + Lr26, L42 of Lr19 + Lr37, L44 of Lr19 + Lr26 + Lr39, L3 of Lr19 + Lr37 + Lr6Agi, L4 of Lr19 + Lr6Agi, L7 of Lr10 + Lr26 + Lr6Agi, L45 of Lr10 + Lr19 + Lr39 + Lr6Agi, and L40 of Lr10 + Lr39 + Lr6Agi. The virulence of the pathogen of the Saratov population was characterized in 2017 and 2018. The samples were collected from susceptible wheat cultivars which grew together with the studied introgression lines. The Lr9, Lr24, Lr28, Lr29, Lr41, Lr42, Lr45, Lr47, Lr50, Lr51, Lr53,and Lr6Agi genes (infection type 0 and 0;) were highly effective. Lines with Lr28, Lr29, Lr41, Lr51, and Lr6Agi genes also showed high resistance under field conditions. Thus, all these genes are perspective for breeding in the Volga region to expand genetic diversity of wheat cultivars. The presence of the isolates virulent to TcLr19 lines was moderate, 16 % in 2017 and 20 % in 2018. All isolates virulent to Lr19 were avirulent to Lr26, which confirms the effectiveness of this combination of Lr-genes in plant protection from leaf rust. This research resulted in a novel breeding material that combines resistance to leaf rust with adaptability to environmental factors, productivity and grain quality. Its distinctive feature is new donors of resistance involved from related species. Among tested lines there are donors which effectively combine either known Lr-genes or known and supposedly new alien Lr-genes. The linkage of Lr19, Lr26, Lr34, Lr37 genes with effective genes for resistance to other diseases, in particular to stem rust, will determine the resistance of new lines to a complex of diseases.

Keywords: Puccinia triticina, virulence, avirulence, Triticum aestivum, introgression lines, Lr-genes.

 

REFERENCES

  1. Lebedev V.B. Rzhavchina pshenitsy v Nizhnem Povolzh'e [Rust of wheats in the Lower Volga region]. Saratov, 1998 (in Russ.).
  2. Krupnov V.A. Vestnik RASKHN, 1997, 6: 12-15 (in Russ.).
  3. Syukov V.V. Listovaya buraya rzhavchina: fitopatologicheskie i selektsionno-geneticheskie aspekty [Brown leaf rust: phytopathological and selection and genetic aspects]. Samara, 2016 (in Russ.).
  4. Sibikeev S.N., Krupnov V.A. Vestnik Saratovskogo gosagrouniversiteta im. N.I.Vavilova, 2007, spetsvypusk: 92-94 (in Russ.).
  5. Shekhurdin A.P. Selektsiya i semenovodstvo yarovoi pshenitsy na Yugo-Vostoke. Izbrannye Trudy [Breeding and seed production of spring wheat in the Southeast. Selected Works]. Moscow, 1961 (in Russ.).
  6. Druzhin A.E., Sibikeev S.N., Krupnov V.A. Vestnik Saratovskogo gosagrouniversiteta im. N.I.Vavilova, 2012, 10: 33-38 (in Russ.).
  7. Markelova T.S. Agro XXI, 2007, 4-6: 37-39 (in Russ.).
  8. Ivanova O.V., Markelova T.S. Zashchita i karantin rastenii, 2011, 9: 20-21 (in Russ.).
  9. Kon'kova E.A. Vestnik zashchity rastenii, 2018, 4(98): 44-49 CrossRef (in Russ.).
  10. Mikhailova L.A. Genetika vzaimootnoshenii vozbuditelya buroi rzhavchiny i pshenitsy [Genetics of the relationship of the causative agent of brown rust and wheat]. St. Petersburg, 2006 (in Russ.).
  11. Sibikeev S.N., Druzhin A.E. The genetic control of leaf rust resistance in the new spring bread wheat introgression lines. Annual Wheat Newsletter, 2014, 60: 121.
  12. Sibikeev S.N., Druzhin A.E., Badaeva E.D., Rouban A.S. Using of the gene pool of bread wheat wild relatives for production of collection of newly identified introgressive spring bread wheat lines resistant to the main pathogens. Annual Wheat Newsletter, 2016, 62: 53.
  13. Wheat rusts. An atlas of resistance genes. R.A. McIntosh., C.R. Wellings, R.F. Park (eds.). CSIRO Publications, Australia, 1995.
  14. Qiu J.W., Schürch A.C., Yahiaoui N., Dong L.L., Fan H.J., Zhang Z.J., Keller B., Ling H.Q. Physical mapping and identification of a candidate for the leaf rust resistance gene Lr1 of wheat. Theor. Appl. Genet., 2007, 115(2): 159-168 CrossRef
  15. Herrera-Foessel S.A., Singh R.P., Huerta-Espino J., William M., Rosewarne G., Djurle A., Yuen J. Identification and mapping of Lr3 and a linked leaf rust resistance gene in durum wheat. Crop Science, 2007, 47(4): 1459-1466 CrossRef
  16. Gupta S.K., Charpe A., Koul S., Prabhu K.V., Haq Q.M. Development and validation of molecular markers linked to an Aegilops umbellulata-derived leaf rust resistance gene, Lr9, for marker-assisted selection in bread wheat. Genome, 2005, 48(5): 823-830 CrossRef
  17. Cheełkowski J., Golka L., Stepien L. Application of STS markers for leaf rust resistance genes in near-isogenic lines of spring wheat cv. Thatcher. J. Appl. Genet., 2003, 44(3): 323-338.
  18. Gupta S.K., Charpe A., Prabhu K.W., Haque O.M.R. Identification and validation of molecular markers linked to the leaf rust resistance gene Lr19 in wheat. Theor. Appl. Genet., 2006, 113(6): 1027-1036 CrossRef
  19. Neu C., Stein N., Keller B. Genetic mapping of the Lr20-Pm1 resistance locus reveals suppressed recombination on chromosome arm 7AL in hexaploid wheat. Genome, 2002, 45(4): 737-744 CrossRef
  20. Hiebert C.W., Thomas J.B., Somers D.J., McCallum B.D., Fox S.L. Microsatellite mapping of adult-plant leaf rust resistance gene Lr22a in wheat. Theor. Appl. Genet., 2007, 115(6): 877-884 CrossRef
  21. Mago R., Zhang P., Bariana H.S., Verlin D.C., Bansal U.K., Ellis J.G., Dundas I.S. Development of wheat lines carrying stem rust resistance gene Sr39 with reduced Aegilops speltoides chromatin and simple PCR markers for marker-assisted selection. Theor. Appl. Genet., 2009, 119(8): 1441-1450 CrossRef
  22. Weng Y., Azhaguvel P., Devkota R.N., Rudd J.C. PCR-based markers for detection of different sources of 1AL.1RS and 1BL.1RS wheat-rye translocations in wheat background. Plant Breed., 2007, 126(5): 482-486 CrossRef
  23. Cherukuri D.P., Gupta S.K., Charpe A., Koul S., Prabhu K.V., Singh R.B., Haq Q.M.R. Molecular mapping of Aegilops speltoides derived leaf rust resistance gene Lr28 in wheat. Euphytica, 2005, 143(1): 19-26 CrossRef
  24. Procunier J.D., Townley-Smith T.F., Fox S., Prashar S., Gray M., Kim W.K., Czarnecki E., Dyck P.L. PCR-based RAPD/DGGE markers linked to leaf rust resistance genes Lr29 and Lr25 in wheat (Triticum aestivum L.). Journal of Genetics and Breeding, 1995, 49(1): 87-91.
  25. Lagudah E.S., McFadden H., Singh R.P., Huerta-Espino J., Bariana H.S., Spielmeyer W. Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theor. Appl. Genet., 2006, 114(1): 21-30 CrossRef
  26. Mago R., Bariana H.S., Dundas I.S. Development or PCR markers for the selection of wheat stem rust resistance genes Sr24 and Sr26 in diverse wheat germplasm. Theor. Appl. Genet., 2005, 111(3): 496-504 CrossRef
  27. Helguera M., Khan I. A., Kolmer J., Lijavetzky D., Zhong-qi L., Dubcovsky J. PCR assays for the Lr37-Yr17-Sr38 cluster of rust resistance genes and their use to develop isogenic hard red spring wheat lines. Crop Science, 2003, 43(5): 1839-1847 CrossRef
  28. Pestsova E., Ganal M.W., Röder, M.S. Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome, 2000, 43(4): 689-697 CrossRef
  29. Helguera M., Khan I.A., Dubcovsky J. Development of PCR markers for wheat leaf rust resistance gene Lr47. Theor. Appl. Genet., 2000, 100(7): 1137-1143 CrossRef
  30. Dadkhodaie N.A., Karaoglou H., Wellings C.R., Park R.F. Mapping genes Lr53 and Yr35 on the short arm of chromosome 6B of common wheat with microsatellite markers and studies of their association with Lr36. Theor. Appl. Genet., 2011, 122(3): 479-87 CrossRef
  31. Marais G.F., Bekker T.A., Eksteen A., McCallum B., Fetch T., Marais A.S. Attempts to remove gametocidal genes co-transferred to common wheat with rust resistance from Aegilops speltoides. Euphytica, 2010, 171(1): 71-85 CrossRef
  32. Schachermayr G.M., Messemer M.M., Feuillet C., Winzeler H., Winzeler M., Keller B. Identification of molecular markers linked to the Agropyron elongatum-derived leaf rust resistance gene Lr24 in wheat. Theor. Appl. Genet., 1995, 90(7-8): 982-990 CrossRef
  33. Sibikeev S.N., Badaeva E.D., Gul'tyaeva E.I., Druzhin L.E., Shishkina A.A., Dragovich A.Yu., Krupin P.Yu., Karlov G.I., Tkhi Mai Kkhuat, Divashuk M.G. Genetika, 2017, 53(3): 298-310 CrossRef (in Russ.).
  34. Dorokhov D.B., Kloke E. Genetika, 1997, 33(4): 443-450 (in Russ.).
  35. Mikhailova L.A., Gul'tyaeva E.I., Mironenko N.V. Sbornik metodicheskikh rekomendatsii po zashchite rastenii [Collection of guidelines for plant protection]. St. Petersburg, 1998: 105-126 (in Russ.).
  36. Gul'tyaeva E.I., Shaidayuk E.L., Shamanin V.P., Akhmetova A.K., Tyunin V.A., Shreider E.R., Kashina I.V., Eroshenko L.A., Sereda G.A., Morgunov A.I. Genetic structure of russian and kazakhstani leaf rust causative agent Puccinia triticina Erikss. Populations as assessed by virulence profiles and SSR markers. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2018, 53(1): 85-95 CrossRef
  37. Long D.L., Kolmer J.A. A North American system of nomenclature for Puccinia recondita f. sp. tritici. Phytopathology, 1989, 79(5): 525-529.
  38. Il'ina L.G. Selektsiya saratovskikh yarovykh pshenits [Selection of Saratov spring wheat]. Saratov, 1996 (in Russ.).
  39. Lepekhov S.B. Vavilovskii zhurnal genetiki i selektsii, 2016, 20(3): 337-343 CrossRef (in Russ.).
  40. Gul'tyaeva E.I., Baranova O.A., Dmitriev A.P. Vestnik zashchity rastenii, 2009, 4: 33-38 (in Russ.).
  41. Zhemchuzhina A., Kurkova N. Structure of population of Puccinia triticina in various regions of Russia in 2006-2008. Proc. of the BGRI Technical Workshop. St. Petersburg, 2010: 27.
  42. McIntosh R.A., Dubcovsky J., Rogers W.J., Morris C., Xia X.C. Catalogue of gene symbols for wheat: 2017 supplement. Available:https://shigen.nig.ac.jp/wheat/komugi/genes/macge-ne/supplement2017.pdf. Accessed: 25.07.2019.
  43. Leonova I.N. Vavilovskii zhurnal genetiki i selektsii, 2018, 22(3): 321-328 CrossRef (in Russ.).
  44. Aktar-Uz-Zaman M., Tuhina-Khatun M., Hanafi M.M., Sahebi M. Genetic analysis of rust resistance genes in global wheat cultivars: an overview. Biotechnology & Biotechnological Equipment, 2017, 31(3): 431-445 CrossRef
  45. Berlyand-Kozhevnikov V.M., Dmitriev A.P., Budashkina E.B., Shitova I.P., Reiter B.G. Ustoichivost' pshenitsy k buroi rzhavchine (geneticheskoe raznoobrazie populyatsii griba i rasteniya-khozyaina) [Resistance of wheat to brown rust (genetic diversity of populations of the fungus and host plant)]. Novosibirsk, 1978 (in Russ.).
  46. Vasil'chuk N.S., Gaponov S.N., Eremenko L.V., Parshikova T.M., Popova V.M., Tsetva N.M., Shutareva G.I. Dostizheniya nauki i tekhniki APK, 2010, 5: 22-24 (in Russ.).
  47. Sibikeev S.N. Chuzherodnye geny v selektsii yarovoi myagkoi pshenitsy na ustoichivost' k listovoi rzhavchine. Doktorskaya dissertatsiya [Alien genes in the selection of spring soft wheat for resistance to leaf rust. DSc Thesis]. Saratov, 2002(in Russ.).
  48. Gul'tyaeva E.I., Orina A.S., Gannibal F.B., Mitrofanova O.P., Odintsova I.G., Laikova L.I. Genetika, 2014, 50(2): 147-156 CrossRef (in Russ.).
  49. Nicol J.M., Bolat N., Bagci A., Trethowan R.T., William M., Hekimhan H., Yidirim A.F., Sahin E., Eleckcioglu H., Toktay H., Tunali B., Hede A., Taner S., Braun H.J., Payne T., Ginkel M., Keser M., Arisoy Z., Yorgancilar A., Tulek A., Erdurmus D., Buyuk O., Aydogdu M. CIMMYT and Turkey's international shuttle breeding program to develop wheat lines with fusarium crown rot and other soil borne pathogen resistances. In: The global fusarium initiative for international collaboration. T. Ban, J.M. Lewis, E.E. Phipps (eds.). Mexico, El Batán, 2006: 110-116.
  50. Sharma S., Ghimire S.K., Niroula R.K., Ojha B.R., Thapa D.B. Marker assisted screening of Nepalese wheat genotypes and advanced lines for resistance to different races of wheat rust species. J. Inst. Agric. Anim. Sci., 2015, 33-34: 165-175 CrossRef
  51. Ishikawa G., Nakamura T., Ashida T., Saito M., Nasuda S., Endo T.R., Wu J., Matsumoto T. Localization of anchor loci representing five hundred annotated rice genes to wheat chromosomes using PLUG markers. Theor. Appl. Genet., 2009, 118(3): 499-514 CrossRef
  52. Salina E.A., Adonina I.G., Badaeva E.D., Kroupin P.Yu., Stasyuk A.I., Leonova I.N., Shishkina A.A., Divashuk M.G., Starikova E.V., Khuat T.M.L., Syukov V.V., Karlov G.I. Thinopyrum intermedium chromosome in bread wheat cultivars as a source of gene conferring resistance to fungal diseases. Euphytica, 2015, 204(1): 91-101 CrossRef
  53. Romanov B.V., Avdeenko A.P. Sovremennye problemy nauki i obrazovaniya, 2012, 1 (in Russ.).
  54. Dakouri A., McCallum B.D., Radovanovic N., Cloutier S. Molecular and phenotypic characterization of seedling and adult plant leaf rust resistance in a world wheat collection. Mol. Breeding, 2013, 32(3): 663-677 CrossRef
  55. Gul'tyaeva E.I., Aristova M.K., Shaidayuk E.L., Mironenko N.V., Kazartsev I.A., Akhmetova A., Kosman E. Genetika, 2017, 53(9): 1053-1060 CrossRef (in Russ.).

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)