БИОЛОГИЯ РАСТЕНИЙ
БИОЛОГИЯ ЖИВОТНЫХ
ПЕЧАТНАЯ ВЕРСИЯ
ЭЛЕКТРОННАЯ ВЕРСИЯ
 
КАК ПОДАТЬ РУКОПИСЬ
 
КАРТА САЙТА
НА ГЛАВНУЮ

 

 

 

 

doi: 10.15389/agrobiology.2020.1.107rus

УДК 633.522:57.04

Выполненная работа соответствовала тематическому плану ВИР по теме № 0662-2019-0001 «Коллекция масличных и прядильных культур ВИР (изучение и расширение генетического разнообразия масличных и прядильных культур)».

 

ФАКТОРЫ, ВЛИЯЮЩИЕ НА СОДЕРЖАНИЕ КАННАБИДИОЛА
В РАСТЕНИЯХ КОНОПЛИ (Cannabis sativa L.)

С.В. ГРИГОРЬЕВ1, К.В. ИЛЛАРИОНОВА2

Производство промышленной конопли и продуктов ее переработки (текстиля, семян и масла для функционального питания, фармацевтических препаратов) — интенсивно развивающиеся отрасли мирового сельскохозяйственного производства. В Российской Федерации в Государственном реестре селекционных достижений, допущенных к использованию, зарегистрированы 27 сортов и гибридов конопли универсального направления продуктивности, однако нет сортов для получения каннабидиола (КБД) — фитоканнабиноида, который не обладает наркотической активностью, не относится к наркотическим средствам, не внесен в список наркотических средств Единой Конвенции ООН о наркотиках, но востребован для производства медицинских препаратов. В настоящее время существует необходимость в сортах фармацевтической специализации (КБД-сортах). В своем исследовании мы впервые выделили формы конопли с признаками контрастно высокого содержания КБД (более 9 %) и следовых количеств Δ9-тетрагидроканнабинола (ТГК) — основного психотропного каннабиноида. Целью работы была оценка эффектов увлажнения, освещения, половой принадлежности и этапа онтогенеза на концентрацию каннабидиола и Δ9-тетрагидроканнабинола у генотипически разнообразных образцов конопли для формирования оптимальной морфофизиологической и агрохозяйственной модели сорта, специализированного для получения КБД в условиях открытого грунта. Материалом служили генотипически оригинальные, пространственно разделенные популяции растений конопли (род Cannabis L.), произрастающие in situ. Исследования проводили в 2008-2011 годах. На территории четырех федеральных округов России выбрали 128 популяций, из которых в 52 изучали эффект фактора затенения, в 58 — фактора избытка увлажнения. В каждой популяции рендомизированно и репрезентативно собирали растения, формировали общие пробы. Образцы отбирали в период начала бутонизации и цветения — начала созревания семян. Пробы для биохимического анализа представляли собой измельченную воздушно-сухую массу верхушечных частей растений в следующих вариантах: с соцветиями, без соцветий, женские растения, мужские растения. Раздельно анализировали соцветия (генеративные части) и только листья (вегетативные части) у двух половых типов конопли. Генотипические различия изученных образцов по содержанию КБД были статистически значимы (p = 0,05). Половой полиморфизм по признаку содержания КБД и ТГК оказался статистически недостоверным. В обеих условных группах мужских и женских растений содержание КБД было приблизительно равным от бутонизации до созревания семян. От стадии бутонизации до созревания семян количество КБД увеличивалось в 2 раза. Генеративные части растений содержали значимо больше КБД, чем вегетативные. К фазе бутонизации у растений разных половых типов в генеративных частях было в 2 раза больше КБД, чем ТГК. Максимум КБД накапливался в генеративных частях до начала созревания семян. Накопление КБД в растениях любых половых типов значимо зависело от интенсивности естественного освещения: нарушение освещения приводило к снижению количества КБД. Фактор избытка (или дефицита) естественного увлажнения на стадии взрослого растения достоверно не влиял на аккумуляцию КБД. В отличие от двудомных сортов конопли зернового и масличного направлений, растения условных половых типов (матерки и поскони) могут быть в равной мере использованы для получения КБД. Матерка должна иметь длительный период бутонизации—полного цветения в условиях минимального количества пыльцы с последующим поздним созреванием семян. Цветение и максимальное пыление поскони должно быть поздним, поскольку дефицит пыльцы способствует накоплению КБД у женских растений. Растения КБД-сорта должны иметь максимальную массу и размер длительно бутонизирующих и цветущих минимально облиственных соцветий.

Ключевые слова: Cannabis sativa L., Cannabis ruderalis L., конопля, половые типы, фитоканнабиноиды, каннабидиол, Δ9-тетрагидроканнабинол, модель CBD-сорта, селекция.

 

 

EVALUATION OF FACTORS HAVING AN EFFECT ON CANNABIDIOL
AMOUNT IN Cannabis sativa L.

S.V. Grigoryev1, K.V. Illarionova2

Industrial hemp is a multipurpose crop, supplying fibers, seeds, and pharmaceuticals. The non-psychotropic cannabidiol (CBD) derived from hemp is a promising pharmaceutical raw material. It shows no psychotropic effects, is not listed in UN Single Convention on Narcotic Drugs, but demanded for the production of medicine products. Regretfully, there are no domestic cultivars of hemp in Russia specialized in phytocannabidiol. Currently, there is a big need in industrial varieties of pharmaceutical specialization (CBD-cultivars). This paper is the first to report on selection of the accessions with high CBD content (above 9 %) and trace amounts of Δ9-tetrahydrocannabinol (THC), the main psychotropic cannabinoid, among the studied genotypic diversity of hemp plants. The objective of the study was the assessment of the effects of field watering, lighting conditions, sexual type of plants and stage of ontogenesis on CBD and THC accumulation on a broad in situ genotypic diversity of Cannabis L. germplasm accessions in order to form the optimal morpho-physiological and agronomical model of CBD-producing cultivar (ideotype) well adapted to field growing. Cannabis populations in situ, genotypically original, spatially separated (and, thus, not undergone to random cross pollination), were surveyed in 2008-2011 in four Russian regions. A total of 128 populations were selected for the research; among them, 52 populations were studied for the effect of shading, and 58 for the moisture excess/deficit. For each population, plants (not less than n = 10 per each variant, i.e. shading vs. lighting, and moisture excess vs. deficit) were collected randomly and representatively to form summarized sample, and then analyzed to reveal the effect of the said factors. The plants were collected from initial budding and flowering of male plants, up to the moment when fimbles have just begun to dry out and the first seeds at the basal parts of female inflorescences have started to ripen. Air-dry samples (with and without inflorescences, female plants, male plants) were crushed and biochemically analyzed. Inflorescences (generative parts) and only leaves (vegetative parts) of the two conventional sexual types were analyzed separately. The analysis of the CBD and THC contents in the studied accessions revealed a statistically significant (p = 0.05) genotypic variability for CBD between the samples. Natural sexual polymorphism in the content of CBD and THC is statistically unreliable. Both male and female plants contain approximately equal CBD concentrations from the budding time until the seed ripening. THC amount was insignificantly increased in female plants. From the budding phase until the start of seed ripening, plants increase their CBD content more than twice. From the budding phase until the seed ripening, CBD amount in inflorescences is significantly thrice more than in vegetative parts. The difference in THC content is significant as well, but not so noteworthy. By the start of budding of different sexual types CBD content in generative parts is twice as high as that of THC. CBD accumulation reaches its maximum in generative plant parts by the time when seed ripening starts initially. The effect of shading on plants of any sexual type has shown that CBD content significantly responds to the exposure and intensity of natural lighting. Any breach in daylight illumination will reduce the CBD content. The factor of excessive/deficient natural moistening has no significant effect on CBD and THC accumulation in plants, regardless of the development phase of an adult plant of any sexual type. Unlike to dioecious cultivars specialized for seed/oil production, both female and male plants may be used for CBD production. Female plants must have extended time of buddingfull flowering in conditions of reduced amounts of pollen in air and deferred seed ripening. Flowering and maximum pollen production from male plants must be deferred, because the lack of pollen in field promotes CBD formation in female inflorescences. CBD cultivar plants should have a maximum inflorescence size, a maximum budding and flowering period, and a minimum foliage.

Keywords: Cannabis sativa L., C. ruderalis L., hemp, plant sexual types, phytocannabinoids, cannabidiol, Δ9-tetrahydrocannabinol, CBD-cultivar ideotype, breeding.

 

1ФГБНУ ФИЦ Всероссийский институт 
генетических ресурсов растений им. Н.И. Вавилова
,
190000 Россия, г. Санкт-Петербург, ул. Большая Морская, 42-44, 
e-mail: s.grigoryev@vir.nw.ru ✉;
2ФГАОУ ВО Санкт-Петербургский политехнический
университет им. Петра Великого, 
195251 Россия, г. Санкт-Петербург, ул. Политехническая, 29,
e-mail: elkv@mail.ru

Поступила в редакцию
22 августа 2019 года

 

назад в начало

 


СОДЕРЖАНИЕ

 

 

Полный текст PDF

Полный текст HTML