PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2019.1.169eng

UDC 577.112:615.322

Acknowledgements:
The authors are grateful to E.O. Zhabon for executed biological tests.
Supported by the Project No. 0112-2019-0002. Next-generation sequencing was supported by Russian Science Foundation under grant No. 16-16-00032.

 

THIONINS OF WHEAT Triticum kiharae Dorof. et Migush. ARE NOVEL POTENT INHIBITORS OF Candida albicans (C.P. Robin) Berkhout

M.P. Slezina, E.A. Istomina, T.I. Odintsova

Vavilov Institute of General Genetics RAS,3, ul. Gubkina, Moscow, 119333 Russia, e-mail omey@list.ru, mer06@yandex.ru, odintsova2005@rambler.ru (✉ corresponding author)

ORCID:
Slezina M.P. orcid.org/0000-0003-1653-5993
Odintsova T.I. orcid.org/0000-0002-5563-9755
Istomina E.A. orcid.org/0000-0001-6426-6009

Received July 17, 2018

 

Plants serve as a source of biologically active compounds, the most important of which are antimicrobial peptides (AMPs). AMPs represent an integral part of the defense arsenal of all living beings. Members of the thionin family found only in plants are effective inhibitors of plant pathogens, including bacteria and fungi, which opens up prospects for their practical application as bio-pesticides to protect plants from diseases. However, the effect of thionins on animal and human pathogens has not been sufficiently studied. Yeast-like fungi of the genus Candida are opportunistic pathogenic microorganisms that occur in 70 % of people without causing disease (M. Dadar et al., 2018). However, in immune-compromised individuals, they can cause a number of serious diseases, the frequency of which has increased significantly in the last two decades. Antimycotics traditionally used to treat Candida infections are not always effective and safe for humans. In this regard, the world is constantly searching for new natural antifungal agents. The aim of this work was to isolate thionins from the kernels of the highly pathogen-resistant wheat species Triticum kiharae Dorof. et Migush., determine their primary structure, and assay antifungal activity against Candida albicans. For the first time from the wheat T. kiharae using chromatography on chitin and reversed-phase high-performance liquid chromatography (HPLC), 2 thionins Tk-AMP-BP and Tk-AMP-AP1 were isolated, and their amino acid sequences were determined by automated Edman degradation. The primary structure of Tk-AMP-BP was confirmed by transcriptome high-throughput sequencing (NGS) of wheat seedlings. The study of antimicrobial activity of Tk-AMP-BP showed that it has potent fungicidal effect on C. albicans cells at very low concentrations (MIC = 0.78 μg/ml). The biological activity of the wheat thionin against C. albicans was higher than that of thionins from other plant species. The results obtained in this work allow us to consider the wheat thionin as a promising molecule for the development on its basis of next-generation drugs to treat C. albicans infections.

Keywords: plant immunity, antimicrobial peptides, Triticum kiharae Dorof. et Migush., wheat species, thionins, mycoses, Candida albicans.

 

 

REFERENCES

  1. Dangl J.L., Jones J.D.G. Plant pathogens and integrated defense responses to infection. Nature, 2001, 411: 826-833 CrossRef
  2. Selitrennikoff C.P. Antifungal proteins. Appl. Environ. Microbiol., 2001, 67: 2883-2894 CrossRef
  3. Manners J.M. Hidden weapons of microbial destruction in plant genomes. Genome Biology, 2007, 8: 225-234 CrossRef
  4. Sels J., Mathys J., De Coninck B.M.A., Cammue B.P.A., De Bolle M.F.C. Plant pathogenesis-related (PR) proteins: a focus on PR peptides. Plant Physiol. Biochem., 2008, 46(11): 941-950 CrossRef
  5. Broekaert W.F., Cammue B.P.A., De Bolle M.F.C., Thevissen K., De Samblanx G.W., Osborn R.W., Nielson K. Antimicrobial peptides from plants. Critical Reviews in Plant Sciences, 1997, 16(3): 297-323 CrossRef
  6. Garcia-Olmedo F., Molina A., Alamillo J.M., Rodriguez-Palenzuela P. Plant defense peptides. Biopolymers, 1998, 47(6): 479-491 CrossRef
  7. Garcia-Olmedo F., Rodriguez-Palenzuela P., Molina A., Alamillo J.M., Lopez-Solanilla E., Berrocal-Lobo M., Poza-Carrion C. Antibiotic activities of peptides, hydrogen peroxide and peroxynitrite in plant defence. FEBS Lett., 2001, 498(2-3): 219-222 CrossRef
  8. Egorov TS.A., Odintsova T.I. Bioorganicheskaya khimiya, 2012, 38(1): 7-17 (in Russ.).
  9. Tam J.P., Wang S., Wong K.H., Tan W.L. Antimicrobial peptides from plants. Pharmaceuticals (Basel), 2015, 8(4): 711-757 CrossRef
  10. Balls A.K., Hale W.S., Harris T.H. A crystalline protein obtained from a lipoprotein of wheat flour. Cereal Chemistry, 1942, 58: 360-361.
  11. Stec B. Plant thionins — the structural perspective. Cell. Mol. Life Sci., 2006, 63(12): 1370-1385 CrossRef
  12. Bohlmann H., Apel K. Isolation and characterization of cDNAs coding for leaf-specific thionins closely related to the endosperm-specific hordothionin of barley Hordeum vulgare L. Mol. Gen. Genet., 1987, 207(2-3): 446-454 CrossRef
  13. Stuart L.S., Harris T.H. Bactericidal and fungicidal properties of a crystalline protein isolated from unbleached wheat flour. Cereal Chemistry, 1942, 19: 288-300.
  14. Fernandez de Caleya R., Gonzalez-Pascual B., Garcia-Olmedo F., Carbonero P. Susceptibility of phytopathogenic bacteria to wheat purothionins in vitro. Journal of Applied Microbiology, 1972, 23(5): 998-1000.
  15. Bohlmann H., Broekaert W.F.A The role of thionins in plant protection. Critical Reviews in Plant Sciences, 1994, 13: 1-16 CrossRef
  16. Loeza-Ángeles H., Sagrero-Cisneros E., Lara-Zárate L., Villagόmes-Gόmez E., Lόpez-Meza J.E., Ochoa-Zarzosa A. Thionin Thi2.1 from Arabidopsis thaliana expressed in endothelial cells shows antibacterial, antifungal and cytotoxic activity. Biotechnol. Lett., 2008, 30(10): 1713-1719 CrossRef
  17. Dadar M., Tiwari R., Karthik K., Chakraborty S., Shahali Y., Dhama K. Candida albicans —biology, molecular characterization, pathogenicity, and advances in diagnosis and control — an update. Microbial Pathogenesis, 2018, 117: 128-138 CrossRef
  18. Bozhko A.V., Kotova A.L. Materialy II Vsesoyuznoi konferentsii «Aktual'nye voprosy klinicheskoi mikrobiologii v neinfektsionnoi klinike» [Proc. of II All-Union Conference «Actual issues of clinical microbiology in non-infectious diseases clinic». Part 2]. Barnaul, 1988, chast’ 2: 154-156 (in Russ.).
  19. Antinori S., Milazzo L., Sollima S., Galli M., Corbellino M. Candidemia and invasive candidiasis in adults: A narrative review. European Journal of Internal Medicine, 2016, 34: 21-28 CrossRef
  20. Kim J.Y. Human fungal pathogens: why should we learn? J. Microbiol., 2016, 54(3): 145-148 CrossRef
  21. Bassetti M., Peghin M., Timsit J.F. The current treatment landscape: candidiasis. Journal of Antimicrobial Chemotherapy, 2016, 71(suppl 2): ii13-ii22 CrossRef
  22. Robbins N., Wright G.D., Cowen L.E. Antifungal drugs: the current armamentarium and development of new agents. Microbiology Spectrum, 2016, 4(5): FUNK-0002-2016 CrossRef
  23. Sanguinetti M., Posteraro B., Lass-Flörl C. Antifungal drug resistance among Candida species: mechanisms and clinical impact. Mycoses, 2015, 58(S2): 2-13 CrossRef
  24. Egorov T.A., Odintsova T.I., Pukhalsky V.A., Grishin E.V. Diversity of wheat antimicrobial peptides. Peptides, 2005, 26: 2064-2073 CrossRef
  25. Odintsova T.I., Vasil'eva I.M., Korostyleva T.V., Utkina L.L., Slavokhotova A.A., Rogozhin E.A., Shiyan A.N., Pukhal'skii V.A., Zasukhina G.D. Genetika, 2011, 47(9): 1267-1270 (in Russ.).
  26. Odintsova T.I., Slezina M.P., Istomina EA, Korostyleva T.V., Kasianov A.S., Kovtun A.S., Makeev V.J., Shcherbakova L.A., Kudryavtsev A.M. Defensin-like peptides in wheat analyzed by whole-transcriptome sequencing: a focus on structural diversity and role in induced resistance. Peer J., 2019, 7: e6125 CrossRef
  27. Grabherr M.G., Haas B.J., Yassour M., Levin J.Z., Thompson D.A., Amit I., Adiconis X., Fan L., Raychowdhury R., Zeng Q., Chen Z., Mauceli E., Hacohen N., Gnirke A., Rhind N., di Palma F., Birren B.W., Nusbaum C., Lindblad-Toh K., Friedman N., Regev A. Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nature Biotechnology, 2011, 29(7): 644-652 CrossRef
  28. Oita S., Ohnishi-Kameyama M., Nagata T. Binding of barley and wheat alpha-thionins to polysaccharides. Bioscience, Biotechnology, and Biochemistry, 2000, 64(5): 958-964 CrossRef
  29. Sánchez-Monge R., Delibes A., Hernandéz-Lucas C., Carbonero P., García-Olmedo F. Homoeologous chromosomal location of the genes encoding thionins in wheat and rye. Theor. Appl. Genet., 1979, 54(2): 61-63 CrossRef
  30. Taveira G.B., Mathias L.S., da Motta O.V., Machado O.L., Rodrigues R., Carvalho A.O., Teixeira-Ferreira A., Perales J., Vasconcelos I.M., Gomes V.M. Thionin-like peptides from Capsicum annuum fruits with high activity against human pathogenic bacteria and yeasts. Biopolymers, 2014, 102(1): 30-39 CrossRef
  31. Oard S., Rush M.C., Oard J.H. Characterization of antimicrobial peptides against a US strain of the rice pathogen Rhizoctonia solani. Journal of Applied Microbiology, 2004, 97(1): 169-180 CrossRef
  32. Llanos P., Henriquez M., Minic J., Elmorjani K., Marion D., Riquelme G., Molgo J., Benoit E. Neuronal and muscular alterations caused by two wheat endosperm proteins, puroindoline-a and alpha-purothionin, are due to ion pore formation. Eur. Biophys. J., 2004, 33(3): 283-284 CrossRef

back